Deep learning based segmentation refinement system.
Project description
Segmentation Refinement
This is an easy-to-use package version of the CVPR2020 paper CascadePSP. It can refines a binary input segmentation of an image. For details, please refer to the complete repository linked above and the paper.
Installation
Through pip:
pip install segmentation-refinement
or locally,
pip install -e .
Usage
The code has been tested on Ubuntu with PyTorch 1.4.
import cv2
import time
import matplotlib.pyplot as plt
import segmentation_refinement as refine
image = cv2.imread('test/aeroplane.jpg')
mask = cv2.imread('test/aeroplane.png', cv2.IMREAD_GRAYSCALE)
# model_path can also be specified here
# This step takes some time to load the model
refiner = refine.Refiner(device='cuda:0') # device can also be 'cpu'
# Fast - Global step only.
# Smaller L -> Less memory usage; faster in fast mode.
output = refiner.refine(image, mask, fast=False, L=900)
plt.imshow(output)
plt.show()
The pre-trained model will be downloaded automatically.
Output (4.77s):
Output (fast, 0.45s):
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Close
Hashes for segmentation-refinement-0.6.tar.gz
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6656323dbd69ad12ef35f68efa6b6fec7474bf17d04e6600dddf88e6572ef9e7 |
|
MD5 | 1cb0f8c2a2242131054cde95034a707b |
|
BLAKE2b-256 | fb7fd4e99e2c5698da1bfdf97c0e130851b1869db0b9939891e5638d5a8d4312 |
Close
Hashes for segmentation_refinement-0.6-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1c9b7531ee0c3ac69b74e7ee90976171e251a3691fd8391dbcd1d1ab67ed3027 |
|
MD5 | 58082ab3eee4f3d70cf6c689b76ac8f7 |
|
BLAKE2b-256 | 86cb35692e8823499bd28a5552e2c078eb72c1457d12a990e1bf06e4e07d4331 |