Tools for evaluating predictions on Simple-ITK Images
Project description
Segmentation_Evaluation_Tools
There are a set of tools for creating quantitative comparison metrics based on ground truth and prediction SITK Image handles
Installation
pip install SegmentationEvaluationTools
Usage
from SegmentationEvaluationTools.SIKOverlapTools import calculate_overlap_measures, determine_sensitivity,
determine_false_positive_rate_and_false_volume, sitk
truth_handle_base = sitk.ReadImage(image_path)
prediction_handle_base = sitk.ReadImage(prediction_path)
overlap_measures = calculate_overlap_measures(prediction_handle_base, truth_handle_base, measure_as_multiple_sites=False, perform_distance_measures=False)
fp_measures = determine_false_positive_rate_and_false_volume(prediction_handle_base, truth_handle_base)
sensitivity_measures = deteremine_sensitivity(prediction_handle=prediction_handle_base, truth_handle_base)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Close
Hashes for SegmentationEvaluationTools-0.0.9.tar.gz
Algorithm | Hash digest | |
---|---|---|
SHA256 | 930057ae1c220bd878ab2aa6f0d01aa9ee56639be62c91c5c2cd9c6abb093231 |
|
MD5 | 7a10624634bc07dc2513d5f9391f7773 |
|
BLAKE2b-256 | 08db94534b62513f0fcda98c6df9fdb4594adb90b18f2413d4fe5d7310570ac3 |
Close
Hashes for SegmentationEvaluationTools-0.0.9-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0c6b994983a0adc2430e2022625aa17532e4a99600e9235699d234c94ab6365d |
|
MD5 | 35237d601a58b15471c5b8b95ed8d297 |
|
BLAKE2b-256 | 82863025bf9aedf49aaa61bfd190463c9fda40086970b74f5017d0612651ec8e |