Skip to main content

A library to apply some data augmentations in semantic segmentation problems

Project description

semantic_segmentation_augmentations

Data augmentation is a regularisation technique that generates new training samples from the original dataset by applying colour or geometric transformations. Although this technique has been applied in other computer vision fields, such as image classification or object detection, the application of this technique in semantic segmentation is not yet widespread.

This library groups some data augmentation techniques for semantic augmentation, such as CutOut or CutMix.

Install

To install the library, run:

pip install semantic_segmentation_augmentations

How it works

This data augmentation techniques are defined as fastai callbacks. Given this fact, you need to train your models using fastai’s API to use them.

As these techniques modifies the input image changing some pixels regions for something else, those callbacks have been defined as the union of two subcomponents: the HoleMakerTechnique, that defines how to make the hole (how to select the region to replace) and the HolesFilling, that defines how to fill the region defined below (the way to fill the region gives the name to the technique used).

The HoleMakerTechnique can be replaced in order to change the behavior of the selection of the region to replace. Doing so, you can use a CutOut technique that select the region randomly or based on the information bounded in that region.

You can also define your custom techniques defining how to fill a hole. You just need to extend the HolesFilling class and define the before_bacth (remember: we are using callbacks from fastai) abstract method. You will have two methods to simplify the process: the make_hole function, that uses the selected HoleMakerTechnique to make the hole and returns two slices (the region boundaries) and the fill_hole function, that fills the hole with something.

How to use it

In order to use these techniques, you just need to define the Learner from fastai with the Callbacks that represent the techniques that you want to use.

For example, if you want to create an U-net Leaner with resnet18 backbone and use the CutOut technique with HoleMakerRandom as region selection techinique (which is the default one), you just need to import it:

from semantic_segmentation_augmentations.holesfilling import CutOutRandom

And add it to your learner:

learner = unet_learner(dls, resnet18, cbs = CutOutRandom(hole_maker = HoleMakerRandom()))

If you want to change the default behaviour of the CutOutRandom technique (i. e. to select the region with a HoleMakerAttention technique), you just need to define the technique as follows:

learner = unet_learner(dls, resnet18, cbs = CutOutRandom(hole_maker = HoleMakerAttention(attention_threshold = 0.25, hole_size = (150, 150))))

Finally, you can apply geometrical augments to the selected regions (using the Albumentations augments). Maybe this augmnets are not useful with the CutOut techniques, but with the CutMix ones. In order to do so, you just need to implement a RegionModifier with a list with the augments to apply:

learner = unet_learner( dls,
                        resnet18,
                        cbs = CutMixRandom( holes_num = 1,
                                            modifier = RegionModifier(A.Compose([A.Blur(), A.GaussNoise()])),
                                            hole_maker = HoleMakerRandom((250, 250)),
                                            p = 1
                        )
                      )

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file semantic_segmentation_augmentations-1.1.0.tar.gz.

File metadata

File hashes

Hashes for semantic_segmentation_augmentations-1.1.0.tar.gz
Algorithm Hash digest
SHA256 e00140317a8f2ba958a65a5a7be6f0fc19581bdf9927da508ce19c053f19a47b
MD5 01e428ccd49a19ffc92d0d0e311e6e9c
BLAKE2b-256 0328a9e3a3fb4012144632508db29250c2fdb7fdbd49d63fe82de44f19eb8daf

See more details on using hashes here.

File details

Details for the file semantic_segmentation_augmentations-1.1.0-py3-none-any.whl.

File metadata

File hashes

Hashes for semantic_segmentation_augmentations-1.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 da3815320bb57707183a88f3dd36129359513cd1124e4e06f55d3162bb3d0fa6
MD5 a7a25456114975ec08a2c79a5561b4a3
BLAKE2b-256 acf922e63c512703240fd15787e2b15133e6158afa55048acfabaae1442465ec

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page