A simple tool for Vietnamese Sentiment Analysis
Project description
A Simple Tool For Vietnamese Sentiment Analysis
Sentivi - a simple tool for sentiment analysis which is a wrapper of scikit-learn and PyTorch models. It is made for easy and faster pipeline to train and evaluate several classification algorithms.
Example
from sentivi import Pipeline
from sentivi.data import DataLoader, TextEncoder
from sentivi.classifier import SVMClassifier
from sentivi.text_processor import TextProcessor
text_processor = TextProcessor(methods=['word_segmentation', 'remove_punctuation', 'lower'])
pipeline = Pipeline(DataLoader(text_processor=text_processor, n_grams=3),
TextEncoder(encode_type='word2vec',
model_path='./pretrained/wiki.vi.model.bin.gz'),
SVMClassifier(num_labels=3))
train_results = pipeline(train='./data/dev.vi', test='./data/dev_test.vi',
save_path='./weights/svm.sentivi')
print(train_results)
predict_results = pipeline.predict(['hàng ok đầu tuýp có một số không vừa ốc siết.'
'chỉ được một số đầu thôi .cần nhất đầu tuýp 14'
'mà không có. không đạt yêu cầu của mình sử dụng',
'Son đẹpppp, mùi hương vali thơm nhưng hơi nồng,'
'chất son mịn, màu lên chuẩn, đẹppppp'])
print(predict_results)
print(f'Decoded results: {pipeline.decode_polarity(predict_results)}')
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
sentivi-0.0.1.tar.gz
(14.2 kB
view hashes)
Built Distribution
sentivi-0.0.1-py3-none-any.whl
(20.7 kB
view hashes)