A simple tool for Vietnamese Sentiment Analysis
Project description
A Simple Tool For Sentiment Analysis
Sentivi - a simple tool for sentiment analysis which is a wrapper of scikit-learn and PyTorch Transformers models (for more specific purpose, it is recommend to use native library instead). It is made for easy and faster pipeline to train and evaluate several classification algorithms.
Documentation: https://sentivi.readthedocs.io/en/latest/index.html
Classifiers
- Decision Tree
- Gaussian Naive Bayes
- Gaussian Process
- Nearest Centroid
- Support Vector Machine
- Stochastic Gradient Descent
- Character Convolutional Neural Network
- Multi-Layer Perceptron
- Long Short Term Memory
- Text Convolutional Neural Network
- Transformer
- Ensemble
- Lexicon-based
Install
-
Install legacy version from PyPI:
pip install sentivi
-
Install latest version from source:
git clone https://github.com/vndee/sentivi cd sentivi pip install .
Example
from sentivi import Pipeline
from sentivi.data import DataLoader, TextEncoder
from sentivi.classifier import SVMClassifier
from sentivi.text_processor import TextProcessor
text_processor = TextProcessor(methods=['word_segmentation', 'remove_punctuation', 'lower'])
pipeline = Pipeline(DataLoader(text_processor=text_processor, n_grams=3),
TextEncoder(encode_type='one-hot'),
SVMClassifier(num_labels=3))
train_results = pipeline(train='./data/dev.vi', test='./data/dev_test.vi')
print(train_results)
pipeline.save('./weights/pipeline.sentivi')
_pipeline = Pipeline.load('./weights/pipeline.sentivi')
predict_results = _pipeline.predict(['hàng ok đầu tuýp có một số không vừa ốc siết. chỉ được một số đầu thôi .cần '
'nhất đầu tuýp 14 mà không có. không đạt yêu cầu của mình sử dụng',
'Son đẹpppp, mùi hương vali thơm nhưng hơi nồng, chất son mịn, màu lên chuẩn, '
'đẹppppp'])
print(predict_results)
print(f'Decoded results: {_pipeline.decode_polarity(predict_results)}')
Take a look at more examples in example/.
Pipeline Serving
Sentivi use FastAPI to serving pipeline. Simply run a web service as follows:
# serving.py
from sentivi import Pipeline, RESTServiceGateway
pipeline = Pipeline.load('./weights/pipeline.sentivi')
server = RESTServiceGateway(pipeline).get_server()
# pip install uvicorn python-multipart
uvicorn serving:server --host 127.0.0.1 --port 8000
Access Swagger at http://127.0.0.1:8000/docs or Redoc http://127.0.0.1:8000/redoc. For example, you can use curl to send post requests:
curl --location --request POST 'http://127.0.0.1:8000/get_sentiment/' \
--form 'text=Son đẹpppp, mùi hương vali thơm nhưng hơi nồng'
# response
{ "polarity": 2, "label": "#POS" }
Deploy using Docker
FROM tiangolo/uvicorn-gunicorn-fastapi:python3.7
COPY . /app
ENV PYTHONPATH=/app
ENV APP_MODULE=serving:server
ENV WORKERS_PER_CORE=0.75
ENV MAX_WORKERS=6
ENV HOST=0.0.0.0
ENV PORT=80
RUN pip install -r requirements.txt
docker build -t sentivi .
docker run -d -p 8000:80 sentivi
Future Releases
- Lexicon-based
- CharCNN
- Ensemble learning methods
- Model serving (Back-end and Front-end)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.