Skip to main content

Sequence Annotation

Project description

https://img.shields.io/travis/nmdp-bioinformatics/SeqAnn.svg Documentation Status Updates https://img.shields.io/pypi/v/seqann.svg https://coveralls.io/repos/github/nmdp-bioinformatics/SeqAnn/badge.svg?branch=master

Python package for annotating gene features

Overview

The seqann package allows users to annotate gene features in consensus sequences. Annotations can be created by passing consensus sequences to the annotate method in the BioSeqAnn class. No parameters are required when initalizing a BioSeqAnn class. However, annotations can be created significantly faster when using a BioSQL database. When a BioSQL database is not provided the lastest hla.dat file is downloaded and parsed. A BioSQL database containing all of IPD-IMGT/HLA is available on DockerHub and can be run on any machine that has docker installed.

Parameters

Below are the list of parameters and the default values used when initalizing a BioSeqAnn object.

Parameter

Type

Default

Description

server

BioSeqDatabase

None

A BioSQL database containing all of the sequence data from IPD-IMGT/HLA.

dbversion

str

Latest

The IPD-IMGT/HLA or KIR database release.

datfile

str

None

The IPD-IMGT/HLA or KIR dat file to use in place of the server parameter.

kir

bool

False

Flag for indicating the input sequences are from the KIR gene system.

align

bool

False

Flag for producing the alignments along with the annotations.

verbose

bool

False

Flag for running in verbose mode.

verbosity

int

None

Numerical value to indicate how verbose the output will be in verbose mode.

debug

Dict

None

A dictionary containing a process names as the key and verbosity as the value

Usage

To annotated a sequence initialize a new BioSeqAnn object and then pass the sequence to the annotate method. The sequence must be a Biopython Seq. The locus of the sequence is not required but it will improve the accuracy of the annotation.

from seqann import BioSeqAnn
seqann = BioSeqAnn()
ann = seqann.annotate(sequence, "HLA-A")

The annotation of sequence can be done with or without providing a BioSeqDatabase. To use a BioSQL database initialize a BioSeqDatabase with the parameters that match the database you have running. If you are running the imgt_biosqldb from DockerHub then the following parameters we be the same.

from seqann import BioSeqAnn
from BioSQL import BioSeqDatabase
server = BioSeqDatabase.open_database(driver="pymysql", user="root",
                                      passwd="my-secret-pw", host="localhost",
                                      db="bioseqdb", port=3306)
seqann = BioSeqAnn(server=server)
ann = seqann.annotate(sequence, "HLA-A")

Annotations

{
     'complete_annotation': True,
     'annotation': {'exon_1': SeqRecord(seq=Seq('AGAGACTCTCCCG', SingleLetterAlphabet()), id='HLA:HLA00630', name='HLA:HLA00630', description='HLA:HLA00630 DQB1*03:04:01 597 bp', dbxrefs=[]),
                    'exon_2': SeqRecord(seq=Seq('AGGATTTCGTGTACCAGTTTAAGGCCATGTGCTACTTCACCAACGGGACGGAGC...GAG', SingleLetterAlphabet()), id='HLA:HLA00630', name='HLA:HLA00630', description='HLA:HLA00630 DQB1*03:04:01 597 bp', dbxrefs=[]),
                    'exon_3': SeqRecord(seq=Seq('TGGAGCCCACAGTGACCATCTCCCCATCCAGGACAGAGGCCCTCAACCACCACA...ATG', SingleLetterAlphabet()), id='HLA:HLA00630', name='<unknown name>', description='HLA:HLA00630', dbxrefs=[])},
     'features': {'exon_1': SeqFeature(FeatureLocation(ExactPosition(0), ExactPosition(13), strand=1), type='exon_1'),
                  'exon_2': SeqFeature(FeatureLocation(ExactPosition(13), ExactPosition(283), strand=1), type='exon_2')
                  'exon_3': SeqFeature(FeatureLocation(ExactPosition(283), ExactPosition(503), strand=1), type='exon_3')},
     'method': 'nt_search and clustalo',
     'gfe': 'HLA-Aw2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-4',
     'seq': SeqRecord(seq=Seq('AGAGACTCTCCCGAGGATTTCGTGTACCAGTTTAAGGCCATGTGCTACTTCACC...ATG', SingleLetterAlphabet()), id='HLA:HLA00630', name='HLA:HLA00630', description='HLA:HLA00630 DQB1*03:04:01 597 bp', dbxrefs=[])
}

Once a sequence has been annotated the gene features and their corresponding sequences are available in the returned Annotation object. If a full annotation is not able to be produced then nothing will be returned. Below is an example showing how the features can be accessed and printed out.

ann = seqann.annotate(sequence, "HLA-A")
for feat in ann.annotation:
    print(feat, ann.gfe, str(ann.annotation[feat].seq), sep="\t")

Install

pip install seqann

Dependencies

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

seqann-1.0.0-py2.py3-none-any.whl (22.3 MB view details)

Uploaded Python 2 Python 3

File details

Details for the file seqann-1.0.0-py2.py3-none-any.whl.

File metadata

  • Download URL: seqann-1.0.0-py2.py3-none-any.whl
  • Upload date:
  • Size: 22.3 MB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.9.1 pkginfo/1.4.1 requests/2.18.4 setuptools/36.6.0 requests-toolbelt/0.8.0 tqdm/4.19.4 CPython/3.6.0

File hashes

Hashes for seqann-1.0.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 5431e35b85a54d4756069d11f0214730e8be082a9627a959ca7774da990c4795
MD5 a48ecc3688a526f198cbc361e361fc6e
BLAKE2b-256 569eaf959abb3af397cd9cb11ea05ff0e5a95c7be237ead6a215913ab1baad04

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page