Collapsed Haplotype Pattern Method for Linkage Analysis of Next-Generation Sequencing Data
Project description
SEQLinkage
Collapsed Haplotype Pattern Method for Linkage Analysis of Next-Generation Sequencing Data
Features
- It can do linkage analysis on single variants and CHP markers.
- It can analyze families from different population.
- It can handle large-scale whole-genome linkage analysis.
Pre-requisites
Make sure you install the pre-requisited before running seqlink:
#install cstatgen
conda install -c conda-forge xeus-cling
conda install -c anaconda swig
conda install -c conda-forge gsl
pip install egglib
git clone https://github.com/statgenetics/cstatgen.git
cd cstatgen
python setup.py install
#install paramlink2
R
install.packages("paramlink2")
Install
pip install SEQLinkage
How to use
!seqlink --help
usage: seqlink [-h] [--single-marker] --fam FILE --vcf FILE [--anno FILE]
[--pop FILE] [--included-vars FILE] [-b FILE] [-c P] [-o Name]
[--build STRING] [--window INT] [--freq INFO]
[--chrom-prefix STRING] [--run-linkage] [-K FLOAT]
[--moi STRING] [-W FLOAT] [-M FLOAT] [--theta-max FLOAT]
[--theta-inc FLOAT]
SEQLinkage V2, linkage analysis using sequence data
options:
-h, --help show this help message and exit
Collapsed haplotype pattern method arguments:
--single-marker Use single variant as the marker. Otherwise, use CHP
markers.
--fam FILE Input pedigree and phenotype information in FAM
format.
--vcf FILE Input VCF file, bgzipped.
--anno FILE Input annotation file from annovar.
--pop FILE Input two columns file, first column is family ID,
second column population information.
--included-vars FILE Variants to be included for linkage analysis, if None,
the analysis won't filter any variants. But you can
still set AF cutoff by -c argment.
-b FILE, --blueprint FILE
Blueprint file that defines regional marker (format:
"chr startpos endpos name avg.distance male.distance
female.distance").
-c P, --maf-cutoff P MAF cutoff to define variants to be excluded from
analyses. this is useful, if you need to analyse
multiple population together.
-o Name, --output Name
Output name prefix.
--build STRING Reference genome version for VCF file.
--window INT If no blueprint, seprate chromosome to pseudogenes
with 1000 (as default) variants.
--freq INFO Info field name for allele frequency in VCF file.
--chrom-prefix STRING
Prefix to chromosome name in VCF file if applicable,
e.g. "chr".
LINKAGE options:
--run-linkage Perform Linkage analysis.
-K FLOAT, --prevalence FLOAT
Disease prevalence. Default to 0.001.
--moi STRING Mode of inheritance, AD/AR: autosomal
dominant/recessive. Default to AD.
-W FLOAT, --wt-pen FLOAT
Penetrance for wild type. Default to 0.01.
-M FLOAT, --mut-pen FLOAT
Penetrance for mutation. Default to 0.9.
--theta-max FLOAT Theta upper bound. Default to 0.5.
--theta-inc FLOAT Theta increment. Default to 0.05.
Linkage analysis on specific regions
Normally, the regions are gene regions. you can also use self-defined regions, such as promoter regions, enhancer regions.
1.run seqlink on CHP marker
!seqlink --fam testdata/test_ped.fam --vcf testdata/test_snps.vcf.gz --anno testdata/test_chr1_anno.csv --pop testdata/test_fam_pop.txt --blueprint testdata/test_blueprint_ext.txt --included-vars testdata/test_chr1_included_vars.txt -o data/test_chp --run-linkage
[1;40;32mMESSAGE: Binary trait detected in [/mnt/vast/hpc/csg/yin/Github/linkage/SEQpy3/nbs/testdata/test_ped.fam][0m
[1;40;32mMESSAGE: Namespace(single_marker=False, tfam='/mnt/vast/hpc/csg/yin/Github/linkage/SEQpy3/nbs/testdata/test_ped.fam', vcf='/mnt/vast/hpc/csg/yin/Github/linkage/SEQpy3/nbs/testdata/test_snps.vcf.gz', anno='testdata/test_chr1_anno.csv', pop='testdata/test_fam_pop.txt', included_vars='testdata/test_chr1_included_vars.txt', blueprint='testdata/test_blueprint_ext.txt', maf_cutoff=None, output='data/test_chp', build='hg38', window=1000, freq='AF', chr_prefix=None, run_linkage=True, prevalence=0.001, inherit_mode='AD', wild_pen=0.01, muta_pen=0.9, theta_max=0.5, theta_inc=0.05)[0m
[1;40;32mMESSAGE: 18 samples found in FAM file but not in VCF file:[0m
[1;40;32mMESSAGE: 18 samples found in [/mnt/vast/hpc/csg/yin/Github/linkage/SEQpy3/nbs/testdata/test_snps.vcf.gz][0m
[1;40;32mMESSAGE: Loading marker map from [testdata/test_blueprint_ext.txt] ...[0m
[1;40;32mMESSAGE: 6 families with a total of 18 samples will be scanned for 12 pre-defined units[0m
SNVHap MIR6859-1@1,MIR6859-2@1,MIR6859-3@1,MIR6859-4@1
[1;40;32mMESSAGE: write to pickle: data/test_chp/chr1result/chr1result0.pickle,Gene number:2,Time:5.62837730265326e-05[0m
create data/test_chp/chr1result/chr1result0_AFcutoffNone_linkage.input
create data/test_chp/chr1result/chr1result0_AFcutoffNone_linkage.lods
0.21258915215730667
create data/test_chp/chr1result/chr1result0_AFcutoffNone_linkage.besthlod
[1;40;32mMESSAGE: ============= Finish analysis ==============[0m
2.run seqlink on variants
!seqlink --single-marker --fam testdata/test_ped.fam --vcf testdata/test_snps.vcf.gz --anno testdata/test_chr1_anno.csv --pop testdata/test_fam_pop.txt --blueprint testdata/test_blueprint_ext.txt -c 0.05 -o data/test_var --run-linkage
[1;40;32mMESSAGE: Binary trait detected in [/mnt/vast/hpc/csg/yin/Github/linkage/SEQpy3/nbs/testdata/test_ped.fam][0m
[1;40;32mMESSAGE: Namespace(single_marker=True, tfam='/mnt/vast/hpc/csg/yin/Github/linkage/SEQpy3/nbs/testdata/test_ped.fam', vcf='/mnt/vast/hpc/csg/yin/Github/linkage/SEQpy3/nbs/testdata/test_snps.vcf.gz', anno='testdata/test_chr1_anno.csv', pop='testdata/test_fam_pop.txt', included_vars=None, blueprint='testdata/test_blueprint_ext.txt', maf_cutoff=0.05, output='data/test_var', build='hg38', window=1000, freq='AF', chr_prefix=None, run_linkage=True, prevalence=0.001, inherit_mode='AD', wild_pen=0.01, muta_pen=0.9, theta_max=0.5, theta_inc=0.05)[0m
[1;40;32mMESSAGE: 18 samples found in FAM file but not in VCF file:[0m
[1;40;32mMESSAGE: 18 samples found in [/mnt/vast/hpc/csg/yin/Github/linkage/SEQpy3/nbs/testdata/test_snps.vcf.gz][0m
[1;40;32mMESSAGE: Loading marker map from [testdata/test_blueprint_ext.txt] ...[0m
[1;40;32mMESSAGE: 6 families with a total of 18 samples will be scanned for 12 pre-defined units[0m
[1;40;32mMESSAGE: write to pickle: data/test_var/chr1result/chr1result0.pickle,Gene number:4,Time:4.1139241204493574e-05[0m
create data/test_var/chr1result/chr1result0_AFcutoff0.05_linkage.input
create data/test_var/chr1result/chr1result0_AFcutoff0.05_linkage.lods
0.3724569082260132
create data/test_var/chr1result/chr1result0_AFcutoff0.05_linkage.besthlod
[1;40;32mMESSAGE: ============= Finish analysis ==============[0m
No annotation
If you don't have the annotation file. there is no need to add
--pop. And--freqshould be setted based on theINFOcolumn in vcf file.
!seqlink --fam testdata/test_ped.fam --vcf testdata/test_snps.vcf.gz --freq='AF' --blueprint testdata/test_blueprint_ext.txt -c 0.05 -o data/test_chp_na --run-linkage
[1;40;32mMESSAGE: Binary trait detected in [/mnt/vast/hpc/csg/yin/Github/linkage/SEQpy3/nbs/testdata/test_ped.fam][0m
[1;40;32mMESSAGE: Namespace(single_marker=False, tfam='/mnt/vast/hpc/csg/yin/Github/linkage/SEQpy3/nbs/testdata/test_ped.fam', vcf='/mnt/vast/hpc/csg/yin/Github/linkage/SEQpy3/nbs/testdata/test_snps.vcf.gz', anno=None, pop=None, included_vars=None, blueprint='testdata/test_blueprint_ext.txt', maf_cutoff=0.05, output='data/test_chp_na', build='hg38', window=1000, freq='AF', chr_prefix=None, run_linkage=True, prevalence=0.001, inherit_mode='AD', wild_pen=0.01, muta_pen=0.9, theta_max=0.5, theta_inc=0.05)[0m
[1;40;32mMESSAGE: 18 samples found in FAM file but not in VCF file:[0m
[1;40;32mMESSAGE: 18 samples found in [/mnt/vast/hpc/csg/yin/Github/linkage/SEQpy3/nbs/testdata/test_snps.vcf.gz][0m
[1;40;32mMESSAGE: Loading marker map from [testdata/test_blueprint_ext.txt] ...[0m
[1;40;32mMESSAGE: 6 families with a total of 18 samples will be scanned for 12 pre-defined units[0m
SNVHap MIR6859-1@1,MIR6859-2@1,MIR6859-3@1,MIR6859-4@1
[1;40;32mMESSAGE: write to pickle: data/test_chp_na/chrallresult/chrallresult0.pickle,Gene number:4,Time:9.55304606921143e-05[0m
create data/test_chp_na/chrallresult/chrallresult0_AFcutoff0.05_linkage.input
create data/test_chp_na/chrallresult/chrallresult0_AFcutoff0.05_linkage.lods
0.3595982789993286
create data/test_chp_na/chrallresult/chrallresult0_AFcutoff0.05_linkage.besthlod
[1;40;32mMESSAGE: ============= Finish analysis ==============[0m
Whole-genome linkage analysis
if
--blueprintis not provided, the genomic region will be seperated to pseudogenes with 1000 variants. you can change the variant number per pseudogene by--window.
!seqlink --single-marker --fam testdata/test_ped.fam --vcf testdata/test_snps.vcf.gz --anno testdata/test_chr1_anno.csv --pop testdata/test_fam_pop.txt -c 0.05 -o data/test_wg --run-linkage
[1;40;32mMESSAGE: Binary trait detected in [/mnt/vast/hpc/csg/yin/Github/linkage/SEQpy3/nbs/testdata/test_ped.fam][0m
[1;40;32mMESSAGE: Generate regions by annotation[0m
[1;40;32mMESSAGE: Namespace(single_marker=True, tfam='/mnt/vast/hpc/csg/yin/Github/linkage/SEQpy3/nbs/testdata/test_ped.fam', vcf='/mnt/vast/hpc/csg/yin/Github/linkage/SEQpy3/nbs/testdata/test_snps.vcf.gz', anno='testdata/test_chr1_anno.csv', pop='testdata/test_fam_pop.txt', included_vars=None, blueprint=None, maf_cutoff=0.05, output='data/test_wg', build='hg38', window=1000, freq='AF', chr_prefix=None, run_linkage=True, prevalence=0.001, inherit_mode='AD', wild_pen=0.01, muta_pen=0.9, theta_max=0.5, theta_inc=0.05)[0m
[1;40;32mMESSAGE: 18 samples found in FAM file but not in VCF file:[0m
[1;40;32mMESSAGE: 18 samples found in [/mnt/vast/hpc/csg/yin/Github/linkage/SEQpy3/nbs/testdata/test_snps.vcf.gz][0m
[1;40;32mMESSAGE: separate chromosome to regions[0m
[1;40;32mMESSAGE: 6 families with a total of 18 samples will be scanned for 1 pre-defined units[0m
[1;40;32mMESSAGE: write to pickle: data/test_wg/chr1result/chr1result0.pickle,Gene number:1,Time:9.195781416363186e-05[0m
create data/test_wg/chr1result/chr1result0_AFcutoff0.05_linkage.input
create data/test_wg/chr1result/chr1result0_AFcutoff0.05_linkage.lods
0.7846571207046509
create data/test_wg/chr1result/chr1result0_AFcutoff0.05_linkage.besthlod
[1;40;32mMESSAGE: ============= Finish analysis ==============[0m
Input format
--fam, Fam file (required, format: "fid iid fathid mothid sex trait[1 control, 2 case, -9 or 0 missing]")
%%writefile testdata/test_ped.fam
1033 1033_2 0 0 2 -9
1033 1033_1 0 0 1 -9
1033 1033_99 1033_1 1033_2 2 1
1033 1033_9 1033_1 1033_2 2 1
1033 1033_3 1033_1 1033_2 2 2
1036 1036_99 1036_1 1036_2 2 2
1036 1036_6 0 0 1 2
1036 1036_1 0 0 1 -9
1036 1036_3 1036_6 1036_99 2 1
1036 1036_4 1036_6 1036_99 2 1
1036 1036_2 0 0 2 -9
1036 1036_5 1036_6 1036_99 1 1
10J_103 10J_103_10 0 0 1 -9
10J_103 10J_103_4 0 0 1 -9
10J_103 10J_103_3 0 0 2 -9
10J_103 10J_103_2 10J_103_4 10J_103_3 2 2
10J_103 10J_103_1 10J_103_10 10J_103_3 1 2
10J_109 10J_109_2 10J_109_6 10J_109_5 1 2
10J_109 10J_109_3 10J_109_6 10J_109_5 1 2
10J_109 10J_109_4 10J_109_6 10J_109_5 1 2
10J_109 10J_109_6 0 0 1 -9
10J_109 10J_109_1 10J_109_6 10J_109_5 1 2
10J_109 10J_109_5 0 0 2 2
10J_109 10J_109_7 10J_109_6 10J_109_5 1 1
10J_112 10J_112_3 0 0 1 1
10J_112 10J_112_5 10J_112_3 10J_112_2 1 2
10J_112 10J_112_1 10J_112_3 10J_112_2 2 1
10J_112 10J_112_7 10J_112_3 10J_112_2 1 1
10J_112 10J_112_2 0 0 2 2
10J_119 10J_119_2 0 0 1 1
10J_119 10J_119_5 0 0 2 1
10J_119 10J_119_4 0 0 1 1
10J_119 10J_119_6 10J_119_4 10J_119_5 1 2
10J_119 10J_119_7 10J_119_4 10J_119_5 2 2
10J_119 10J_119_1 10J_119_4 10J_119_5 2 2
10J_119 10J_119_3 10J_119_2 10J_119_1 1 1
Overwriting ../testdata/test_ped.fam
--vcf, VCF file (required, vcf.gz with vcf.gz.tbi)
bgzip -c file.vcf > file.vcf.gz
tabix -p vcf file.vcf.gz
--anno, Annotation file fromANNOVAR, It must contains the allele frequency for population in the file of family population information. For example in here, The annotation file must have AF_amr, AF_afr, AF_nfe columns.
anno=pd.read_csv('testdata/test_chr1_anno.csv')
anno
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
</style>
| Chr | Start | End | Ref | Alt | Func.refGene | Gene.refGene | GeneDetail.refGene | ExonicFunc.refGene | AAChange.refGene | ... | CLNDISDB | CLNREVSTAT | CLNSIG | DN ID | Patient ID | Phenotype | Platform | Study | Pubmed ID | Otherinfo1 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 1 | 10140 | 10147 | ACCCTAAC | A | intergenic | NONE;DDX11L1 | dist=NONE;dist=1727 | . | . | ... | . | . | . | . | . | . | . | . | . | chr1:10140:ACCCTAAC:A |
| 1 | 1 | 10146 | 10147 | AC | A | intergenic | NONE;DDX11L1 | dist=NONE;dist=1727 | . | . | ... | . | . | . | . | . | . | . | . | . | chr1:10146:AC:A |
| 2 | 1 | 10146 | 10148 | ACC | * | . | . | . | . | . | ... | . | . | . | . | . | . | . | . | . | chr1:10146:ACC:* |
| 3 | 1 | 10150 | 10151 | CT | C | intergenic | NONE;DDX11L1 | dist=NONE;dist=1723 | . | . | ... | . | . | . | . | . | . | . | . | . | chr1:10150:CT:C |
| 4 | 1 | 10172 | 10177 | CCCTAA | C | intergenic | NONE;DDX11L1 | dist=NONE;dist=1697 | . | . | ... | . | . | . | . | . | . | . | . | . | chr1:10172:CCCTAA:C |
| ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
| 995 | 1 | 66479 | 66487 | TATTTATAG | * | . | . | . | . | . | ... | . | . | . | . | . | . | . | . | . | chr1:66479:TATTTATAG:* |
| 996 | 1 | 66480 | 66481 | AT | A | intergenic | FAM138A;OR4F5 | dist=30399;dist=2610 | . | . | ... | . | . | . | . | . | . | . | . | . | chr1:66480:AT:A |
| 997 | 1 | 66480 | 66483 | ATTT | * | . | . | . | . | . | ... | . | . | . | . | . | . | . | . | . | chr1:66480:ATTT:* |
| 998 | 1 | 66481 | 66488 | TTTATAGA | T | intergenic | FAM138A;OR4F5 | dist=30400;dist=2603 | . | . | ... | . | . | . | . | . | . | . | . | . | chr1:66481:TTTATAGA:T |
| 999 | 1 | 66481 | 66488 | TTTATAGA | * | . | . | . | . | . | ... | . | . | . | . | . | . | . | . | . | chr1:66481:TTTATAGA:* |
1000 rows × 152 columns
anno.loc[:,['AF_amr', 'AF_afr', 'AF_nfe']]
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
</style>
| AF_amr | AF_afr | AF_nfe | |
|---|---|---|---|
| 0 | 0.0006 | 0.0008 | 0.0007 |
| 1 | 0.6380 | 0.6300 | 0.6413 |
| 2 | . | . | . |
| 3 | 0.0357 | 0.0426 | 0.0370 |
| 4 | 0.0086 | 0.0097 | 0.0084 |
| ... | ... | ... | ... |
| 995 | . | . | . |
| 996 | 0.0039 | 0.0036 | 0.0076 |
| 997 | . | . | . |
| 998 | 0.0163 | 0.0410 | 0.0279 |
| 999 | . | . | . |
1000 rows × 3 columns
Or, create a self-defined annotation file like this:
Chr Start AF_amr AF AF_nfe AF_afr
chr1:10140:ACCCTAAC:A 1 10140 0.0006 0.0007 0.0007 0.0008
chr1:10146:AC:A 1 10146 0.638 0.6328 0.6413 0.63
chr1:10150:CT:C 1 10150 0.0357 0.0375 0.037 0.0426
chr1:10172:CCCTAA:C 1 10172 0.0086 0.0082 0.0084 0.0097
chr1:10178:CCTAA:C 1 10178 0.5 0.3333 0.2955 0.4375
chr1:10198:TAACCC:T 1 10198 0.0 0.0 0.0 0.0
chr1:10231:C:A 1 10231 0.2 0.0366 0.0 0.05
chr1:10236:AACCCT:A 1 10236 0.0 0.0 0.0 0.0
chr1:10247:TAAACCCTA:T 1 10247 0.2222 0.2089 0.1429 0.4211
The index must match with the ID in vcf file.
--pop, The file of family population information
%%writefile testdata/test_fam_pop.txt
1033 AF_amr
1036 AF_amr
10J_103 AF_afr
10J_109 AF_nfe
10J_112 AF_nfe
10J_119 AF_nfe
Writing ../testdata/test_fam_pop.txt
--included-vars, The file with one column of variants For example:
chr1:10140:ACCCTAAC:A
chr1:10172:CCCTAA:C
chr1:10198:TAACCC:T
chr1:10236:AACCCT:A
chr1:10261:T:TA
chr1:10262:AACCCT:A
--blueprint, The blueprint file that defines regional marker (format: "chr startpos endpos name avg.distance male.distance female.distance"). The first four columns are required.
%%writefile testdata/test_blueprint_ext.txt
1 11868 14362 LOC102725121@1 9.177127474362311e-07 1.1657192989882668e-06 6.814189157634088e-07
1 11873 14409 DDX11L1 9.195320788455595e-07 1.1680302941673515e-06 6.82769803434766e-07
1 14361 29370 WASH7P 1.5299877409602128e-06 1.94345806118021e-06 1.136044574393209e-06
1 17368 17436 MIR6859-1@1,MIR6859-2@1,MIR6859-3@1,MIR6859-4@1 1.217692507120495e-06 1.5467668502473368e-06 9.041595098829462e-07
1 30365 30503 MIR1302-10@1,MIR1302-11@1,MIR1302-2@1,MIR1302-9@1 2.1295973889038703e-06 2.705108741548526e-06 1.5812659765416382e-06
1 34610 36081 FAM138A@1,FAM138C@1,FAM138F@1 2.4732411024120156e-06 3.1416201771056266e-06 1.8364278747737466e-06
1 69090 70008 OR4F5 4.866641545668504e-06 6.181823219621424e-06 3.6135725636621673e-06
1 134772 140566 LOC729737 9.633289838108921e-06 1.2236630588823159e-05 7.152898262617822e-06
1 490755 495445 LOC100132062@1,LOC100132287@1 2.2828130832833112e-05 2.8997300893994373e-05 1.6950315013571593e-05
1 450739 451678 OR4F16@1,OR4F29@1,OR4F3@1 2.575942360468604e-05 3.2720758549649544e-05 1.912685483821856e-05
1 627379 629009 LOC101928626 3.943568768003252e-05 5.009295373297854e-05 2.9281737249900675e-05
1 632614 632685 MIR12136 3.974742311959244e-05 5.048893386847169e-05 2.9513206656665908e-05
Overwriting testdata/test_blueprint_ext.txt
Or
%%writefile testdata/test_blueprint.txt
1 11868 14362 LOC102725121@1
1 11873 14409 DDX11L1
1 14361 29370 WASH7P
1 17368 17436 MIR6859-1@1,MIR6859-2@1,MIR6859-3@1,MIR6859-4@1
1 30365 30503 MIR1302-10@1,MIR1302-11@1,MIR1302-2@1,MIR1302-9@1
1 34610 36081 FAM138A@1,FAM138C@1,FAM138F@1
1 69090 70008 OR4F5
1 134772 140566 LOC729737
1 490755 495445 LOC100132062@1,LOC100132287@1
1 450739 451678 OR4F16@1,OR4F29@1,OR4F3@1
1 627379 629009 LOC101928626
1 632614 632685 MIR12136
Overwriting testdata/test_blueprint.txt
Output format
- InfoFam: the number of families with the variant or the CHP marker.
LOD Score.
It is calculated from 0 to 0.5 with step 0.05 per family per gene. you can change them by --theta-inc and --theta-max.
- LOD0: the sum of LOD score at theta=0 among all families
- LODmax: the max of the sum of LOD score among all families between the range of thetas.
HLOD Score
- theta: the theta of best HLOD score.
- alpha: the alpha of best HLOD score.
- hlod: the max HLOD of these HLOD between the range of thetas.
The summary result of CHP markers
result=pd.read_csv('data/test_chp/chr1result_lod_summary.csv',index_col=0)
result
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
</style>
| chrom | start | end | name | InfoFam | LOD0 | LODmax | theta | alpha | hlod | |
|---|---|---|---|---|---|---|---|---|---|---|
| MIR6859-1@1,MIR6859-2@1,MIR6859-3@1,MIR6859-4@1 | 1 | 17368 | 17436 | MIR6859-1@1,MIR6859-2@1,MIR6859-3@1,MIR6859-4@1 | 3 | -0.864448 | 0.000000 | LOD0.5 | 0.0 | 0.000000 |
| WASH7P | 1 | 14361 | 29370 | WASH7P | 2 | -0.507697 | 0.019594 | LOD0.3 | 1.0 | 0.019594 |
The summary result of single variants
result=pd.read_csv('data/test_var/chr1result_lod_summary.csv',index_col=0)
result
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
</style>
| chrom | pos | a0 | a1 | InfoFam | LOD0 | LODmax | theta | alpha | hlod | |
|---|---|---|---|---|---|---|---|---|---|---|
| chr1:13302:C:T | chr1 | 13302 | C | T | 1 | -0.008503 | 0.000000 | LOD0.5 | 0.000000 | 0.000000 |
| chr1:13687:GCCAT:G | chr1 | 13687 | GCCAT | G | 1 | 0.024553 | 0.024553 | LOD0.0 | 1.000000 | 0.024553 |
| chr1:14464:A:T | chr1 | 14464 | A | T | 1 | -0.113847 | 0.000000 | LOD0.5 | 0.000000 | 0.000000 |
| chr1:14470:G:A | chr1 | 14470 | G | A | 1 | -0.122592 | 0.000000 | LOD0.5 | 0.000000 | 0.000000 |
| chr1:14773:C:T | chr1 | 14773 | C | T | 1 | -0.007627 | 0.000000 | LOD0.5 | 0.000000 | 0.000000 |
| chr1:14843:G:A | chr1 | 14843 | G | A | 1 | -0.280266 | 0.000000 | LOD0.5 | 0.000000 | 0.000000 |
| chr1:14933:G:A | chr1 | 14933 | G | A | 1 | 0.000000 | 0.000000 | LOD0.5 | 0.000000 | 0.000000 |
| chr1:16103:T:G | chr1 | 16103 | T | G | 4 | -0.414168 | 0.079880 | LOD0.0 | 0.376008 | 0.080043 |
| chr1:17147:G:A | chr1 | 17147 | G | A | 1 | -0.000219 | 0.000000 | LOD0.5 | 0.000000 | 0.000000 |
| chr1:17358:ACTT:A | chr1 | 17358 | ACTT | A | 1 | 0.000000 | 0.000000 | LOD0.5 | 0.000000 | 0.000000 |
| chr1:17379:G:A | chr1 | 17379 | G | A | 1 | -0.741666 | 0.000000 | LOD0.5 | 0.000000 | 0.000000 |
| chr1:17406:C:T | chr1 | 17406 | C | T | 1 | -0.122782 | 0.000000 | LOD0.5 | 0.000000 | 0.000000 |
| chr1:17407:G:A | chr1 | 17407 | G | A | 1 | 0.016021 | 0.016021 | LOD0.0 | 1.000000 | 0.016021 |
| chr1:17408:C:G | chr1 | 17408 | C | G | 1 | 0.356048 | 0.356048 | LOD0.0 | 1.000000 | 0.356048 |
| chr1:17519:G:T | chr1 | 17519 | G | T | 2 | 0.099799 | 0.112751 | LOD0.0 | 0.728031 | 0.114024 |
| chr1:17594:C:T | chr1 | 17594 | C | T | 2 | 0.100280 | 0.113080 | LOD0.0 | 0.729654 | 0.114300 |
| chr1:17614:G:A | chr1 | 17614 | G | A | 1 | -0.120530 | 0.000000 | LOD0.5 | 0.000000 | 0.000000 |
| chr1:17716:G:A | chr1 | 17716 | G | A | 1 | -0.122820 | 0.000000 | LOD0.5 | 0.000000 | 0.000000 |
| chr1:17722:A:G | chr1 | 17722 | A | G | 1 | -0.122079 | 0.000000 | LOD0.5 | 0.000000 | 0.000000 |
| chr1:17767:G:A | chr1 | 17767 | G | A | 1 | -0.122801 | 0.000000 | LOD0.5 | 0.000000 | 0.000000 |
| chr1:17928:T:A | chr1 | 17928 | T | A | 1 | -0.000219 | 0.000000 | LOD0.5 | 0.000000 | 0.000000 |
| chr1:17929:C:A | chr1 | 17929 | C | A | 1 | -0.000219 | 0.000000 | LOD0.5 | 0.000000 | 0.000000 |
| chr1:20184:A:G | chr1 | 20184 | A | G | 1 | -0.000219 | 0.000000 | LOD0.5 | 0.000000 | 0.000000 |
| chr1:20231:T:G | chr1 | 20231 | T | G | 1 | -0.741144 | 0.000000 | LOD0.5 | 0.000000 | 0.000000 |
| chr1:20235:G:A | chr1 | 20235 | G | A | 1 | -0.118623 | 0.000000 | LOD0.5 | 0.000000 | 0.000000 |
| chr1:20443:G:A | chr1 | 20443 | G | A | 1 | -0.280236 | 0.000000 | LOD0.5 | 0.000000 | 0.000000 |
| chr1:20485:CA:C | chr1 | 20485 | CA | C | 1 | 0.000000 | 0.000000 | LOD0.5 | 0.000000 | 0.000000 |
| chr1:20522:T:G | chr1 | 20522 | T | G | 1 | 0.000000 | 0.000000 | LOD0.5 | 0.000000 | 0.000000 |
| chr1:29368:G:A | chr1 | 29368 | G | A | 2 | -0.280978 | 0.000000 | LOD0.5 | 0.000000 | 0.000000 |
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file SEQLinkage-2.0.4.tar.gz.
File metadata
- Download URL: SEQLinkage-2.0.4.tar.gz
- Upload date:
- Size: 2.8 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.10.2
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
55e805096619b3646651b0479d43744a4fe9c9292339c49ff9c70950d91fa014
|
|
| MD5 |
4317fa892624369d714b68456a8bf936
|
|
| BLAKE2b-256 |
b8449c0551b827a76123a615d00bbe61e3dd5a33d5606c08695e354c81bd2497
|
File details
Details for the file SEQLinkage-2.0.4-py3-none-any.whl.
File metadata
- Download URL: SEQLinkage-2.0.4-py3-none-any.whl
- Upload date:
- Size: 44.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.10.2
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
b4d9e334a554a6be9582f84af02e9a153baa07f6c66614f50788007692887bc4
|
|
| MD5 |
331bcdfc32029db1014bfb274ffba337
|
|
| BLAKE2b-256 |
dffecb913504d978bc8f7f1ece90bbf3054704930a3bc2fd742c6700f0065a0b
|