No project description provided
Project description
Sequential properties - peptide representation scheme
This package contains implementation of sequential properties representation scheme from the paper "Sequential properties representation scheme for recurrent neural network based prediction of therapeutic peptides". If you use this package in your work, please cite it as below or use the citation option in the side menu.
Otović, E., Njirjak, M., Kalafatovic, D., & Mauša, G. (2022). Sequential Properties Representation Scheme for Recurrent Neural Network-Based Prediction of Therapeutic Peptides. Journal of Chemical Information and Modeling, 62(12), 2961-2972.
You can install this package manually from this repository or from PyPI repository with
pip install seqprops
Usage
from seqprops import SequentialPropertiesEncoder
encoder = SequentialPropertiesEncoder()
encoder.encode(["AA", "HTTA"])
Minimal working example
import numpy as np
from sklearn.preprocessing import MinMaxScaler
from tensorflow import keras
from seqprops import SequentialPropertiesEncoder
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Dense, Input, LSTM
# Some input data
sequences = ["AAC", "ACACA", "AHHHTK", "HH"]
y = np.array([0, 1, 1, 0])
# Encode sequences
encoder = SequentialPropertiesEncoder(scaler=MinMaxScaler(feature_range=(-1, 1)))
X = encoder.encode(sequences)
# Define a model
model_input = Input(shape=X.shape[1:], name="input_1")
x = LSTM(32, unroll=True, name="bi_lstm")(model_input)
x = Dense(1, activation='sigmoid', name="output_dense")(x)
model = Model(inputs=model_input, outputs=x)
# Model training
adam_optimizer = keras.optimizers.Adam()
model.compile(loss="binary_crossentropy", optimizer=adam_optimizer)
model.fit(
X, y,
)
Available properties
You can list available properties with:
print(encoder.get_available_properties())
To manually select specific properties:
encoder.select_properties(['MSWHIM_MSWHIM3', 'tScales_T1'])
For automatic feature selection, the users are referred to function feature_selection and usage example here
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file seqprops-1.0.3.tar.gz
.
File metadata
- Download URL: seqprops-1.0.3.tar.gz
- Upload date:
- Size: 11.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1213ce5c9e47cf06f455ea8b2e9bf0975b840b41ee3b20e42f3a85e8d5751ae2 |
|
MD5 | 75b50cc08de917310d0392e7055a6310 |
|
BLAKE2b-256 | 48483430d7f8b85804ab61fb37670dfe3775d68731c63ddfce756d8de62b2405 |