Skip to main content

No project description provided

Project description

Sequential properties - peptide representation scheme

This package contains implementation of sequential properties representation scheme from the paper "Sequential properties representation scheme for recurrent neural network based prediction of therapeutic peptides". If you use this package in your work, please cite it as below or use the citation option in the side menu.

Otović, E., Njirjak, M., Kalafatovic, D., & Mauša, G. (2022). Sequential Properties Representation Scheme for Recurrent Neural Network-Based Prediction of Therapeutic Peptides. Journal of Chemical Information and Modeling, 62(12), 2961-2972.

You can install this package manually from this repository or from PyPI repository with

pip install seqprops

Usage

from seqprops import SequentialPropertiesEncoder
encoder = SequentialPropertiesEncoder()
encoder.encode(["AA", "HTTA"])

Minimal working example

import numpy as np
from sklearn.preprocessing import MinMaxScaler
from tensorflow import keras
from seqprops import SequentialPropertiesEncoder
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Dense, Input, LSTM

# Some input data
sequences = ["AAC", "ACACA", "AHHHTK", "HH"]
y = np.array([0, 1, 1, 0])

# Encode sequences
encoder = SequentialPropertiesEncoder(scaler=MinMaxScaler(feature_range=(-1, 1)))
X = encoder.encode(sequences)

# Define a model
model_input = Input(shape=X.shape[1:], name="input_1")
x = LSTM(32, unroll=True, name="bi_lstm")(model_input)
x = Dense(1, activation='sigmoid', name="output_dense")(x)
model = Model(inputs=model_input, outputs=x)

# Model training
adam_optimizer = keras.optimizers.Adam()
model.compile(loss="binary_crossentropy", optimizer=adam_optimizer)
model.fit(
    X, y, 
)

Available properties

You can list available properties with:

print(encoder.get_available_properties())

To manually select specific properties:

encoder.select_properties(['MSWHIM_MSWHIM3', 'tScales_T1'])

For automatic feature selection, the users are referred to function feature_selection and usage example here

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

seqprops-1.0.3.tar.gz (11.3 kB view details)

Uploaded Source

File details

Details for the file seqprops-1.0.3.tar.gz.

File metadata

  • Download URL: seqprops-1.0.3.tar.gz
  • Upload date:
  • Size: 11.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.4

File hashes

Hashes for seqprops-1.0.3.tar.gz
Algorithm Hash digest
SHA256 1213ce5c9e47cf06f455ea8b2e9bf0975b840b41ee3b20e42f3a85e8d5751ae2
MD5 75b50cc08de917310d0392e7055a6310
BLAKE2b-256 48483430d7f8b85804ab61fb37670dfe3775d68731c63ddfce756d8de62b2405

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page