Skip to main content

A Python package for working with protein sequence and PTM

Project description

SEQUAL / seq=

Sequal is a Python package for in-silico generation of modified sequences from a sequence input and modifications. It is designed to assist in protein engineering, mass spectrometry analysis, drug design, and other bioinformatics research.

Features

  • Generate all possible sequences with static and variable modifications.
  • Support for custom modification annotations.
  • Utilities for mass spectrometry fragment generation.

Installation

To install Sequal, use pip:

pip install sequal

Usage

Sequence comprehension

Using Sequence Object with Unmodified Protein Sequence

from sequal.sequence import Sequence
#Using Sequence object with unmodified protein sequence

seq = Sequence("TESTEST")
print(seq.seq) #should print "TESTEST"
print(seq[0:2]) #should print "TE"

Using Sequence Object with Modified Protein Sequence

from sequal.sequence import Sequence
#Using Sequence object with modified protein sequence. []{}() could all be used as modification annotation. 

seq = Sequence("TEN[HexNAc]ST")
for i in seq.seq:
    print(i, i.mods) #should print N [HexNAc] on the 3rd amino acid

seq = Sequence("TEN[HexNAc][HexNAc]ST")
for i in seq.seq:
    print(i, i.mods) #should print N [HexNAc, HexNAc] on the 3rd amino acid   

# .mods property provides an access to all amino acids at this amino acid

seq = Sequence("TE[HexNAc]NST", mod_position="left") #mod_position left indicate that the modification should be on the left of the amino acid instead of default which is right
for i in seq.seq:
    print(i, i.mods) #should print N [HexNAc] on the 3rd amino acid

Custom Annotation Formatting

from sequal.sequence import Sequence
#Format sequence with custom annotation
seq = Sequence("TENST")
a = {1:"tes", 2:["1", "200"]}
print(seq.to_string_customize(a, individual_annotation_enclose=False, individual_annotation_separator="."))
# By supplying .to_string_customize with a dictionary of position on the sequence that you wish to annotate
# The above would print out TE[tes]N[1.200]ST

Modification

Creating a Modification Object

from sequal.modification import Modification

# Create a modification object and try to find all its possible positions using regex
mod = Modification("HexNAc", regex_pattern="N[^P][S|T]")
for ps, pe in mod.find_positions("TESNEST"):
    print(ps, pe)
    # this should print out the position 3 on the sequence as the start of the match and position 6 as the end of the match

Generating Modified Sequences

Static Modification

from sequal.sequence import ModdedSequenceGenerator
from sequal.modification import Modification

propiona = Modification("Propionamide", regex_pattern="C", mod_type="static")
seq = "TECSNTT"
mods = [propiona]
g = ModdedSequenceGenerator(seq, static_mods=mods)
for i in g.generate():
    print(i)  # should print {2: [Propionamide]}

Variable Modification

from sequal.sequence import ModdedSequenceGenerator
from sequal.modification import Modification

nsequon = Modification("HexNAc", regex_pattern="N[^P][S|T]", mod_type="variable", labile=True)
osequon = Modification("Mannose", regex_pattern="[S|T]", mod_type="variable", labile=True)
carbox = Modification("Carboxylation", regex_pattern="E", mod_type="variable", labile=True)

seq = "TECSNTT"
mods = [nsequon, osequon, carbox]
g = ModdedSequenceGenerator(seq, mods, [])
print(g.variable_map.mod_position_dict)
# should print {'HexNAc0': [3], 'Mannose0': [0, 2, 4, 5, 6], 'Carboxylation0': [1]}

for i in g.generate():
    print(i)
    # should print all possible combinations of variable modifications

Mass spectrometry utilities

Generating Non-Labile and Labile Ions

from sequal.mass_spectrometry import fragment_non_labile, fragment_labile
from sequal.modification import Modification
from sequal.sequence import ModdedSequenceGenerator, Sequence

nsequon = Modification("HexNAc", regex_pattern="N[^P][S|T]", mod_type="variable", labile=True, labile_number=1, mass=203)
propiona = Modification("Propionamide", regex_pattern="C", mod_type="static", mass=71)

seq = "TECSNTT"
static_mods = [propiona]
variable_mods = [nsequon]

g = ModdedSequenceGenerator(seq, variable_mods, static_mods)
for i in g.generate():
    print(i)
    s = Sequence(seq, mods=i)
    for b, y in fragment_non_labile(s, "by"):
        print(b, "b{}".format(b.fragment_number))
        print(y, "y{}".format(y.fragment_number))

g = ModdedSequenceGenerator(seq, variable_mods, static_mods)
for i in g.generate():
    s = Sequence(seq, mods=i)
    ion = fragment_labile(s)
    if ion.has_labile:
        print(ion, "Y{}".format(ion.fragment_number))
        print(ion.mz_calculate(1))

License

This project is licensed under the MIT License - see the LICENSE file for details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sequal-1.0.3.tar.gz (13.0 kB view hashes)

Uploaded Source

Built Distribution

sequal-1.0.3-py3-none-any.whl (14.8 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page