Skip to main content

Sequali is a QC tool that generates useful graphs for both short and long-read data.

Project description

Sequali

Sequence quality metrics for FASTQ and uBAM files.

Features:

  • MultiQC support since MultiQC version 1.22.

  • Low memory footprint, small install size and fast execution times.

  • Informative graphs that allow for judging the quality of a sequence at a quick glance.

  • Overrepresentation analysis using 21 bp sequence fragments. Overrepresented sequences are checked against the NCBI univec database.

  • Estimate duplication rate using a fingerprint subsampling technique which is also used in filesystem duplication estimation.

  • Checks for 6 illumina adapter sequences and 17 nanopore adapter sequences for single read data.

  • Determines adapters by overlap analysis for paired read data.

  • Insert size metrics for paired read data.

  • Per tile quality plots for illumina reads.

  • Channel and other plots for nanopore reads.

  • FASTQ and unaligned BAM are supported. See “Supported formats”.

Example reports:

  • GM24385_1.fastq.gz; HG002 (Genome In A Bottle) on ultra-long Nanopore Sequencing. Sequence file download.

  • GM24385_1_cut.fastq.gz; GM24385_1.fastq.gz processed with cutadapt: cutadapt -o GM24385_1_cut.fastq.gz --cut -64 --cut 64 --minimum-length 500 -Z --max-aer 0.1 GM24385_1.fastq.gz. The resulting file has 64 bp cut off from both its ends and after that filtered for a minimum length of 500 and a maximum average error rate of 0.1.

  • 21C125_R1.fastq.gz; Illumina NovaSeq X paired-end sequencing of Campylobacter jejuni. ENA accession: ERR11204024.

For more information check the documentation.

Supported formats

  • FASTQ. Only the Sanger variation with a phred offset of 33 and the error rate calculation of 10 ^ (-phred/10) is supported. All sequencers use this format today.

    • Paired end sequencing data is supported.

    • For sequences called by illumina base callers an additional plot with the per tile quality will be provided.

    • For sequences called by guppy additional plots for nanopore specific data will be provided.

  • unaligned BAM. Any alignment flags are currently ignored.

    • For uBAM data as delivered by dorado additional nanopore plots will be provided.

Installation

Installation via pip is available with:

pip install sequali

Sequali is also distributed via bioconda. It can be installed with:

conda install -c conda-forge -c bioconda sequali

Quickstart

sequali path/to/my.fastq.gz

This will create a report my.fastq.gz.html and a json my.fastq.gz.json in the current working directory.

For all command line options checkout the usage documentation.

For more extensive information about the module options check the documentation on the module options.

Acknowledgements

  • FastQC for its excellent selection of relevant metrics. For this reason these metrics are also gathered by Sequali.

  • The matplotlib team for their excellent work on colormaps. Their work was an inspiration for how to present the data and their RdBu colormap is used to represent quality score data. Check their writings on colormaps for a good introduction.

  • Wouter de Coster for his excellent post on how to correctly average phred scores.

  • Marcel Martin for providing very extensive feedback.

License

This project is licensed under the GNU Affero General Public License v3. Mainly to avoid commercial parties from using it without notifying the users that they can run it themselves. If you want to include code from Sequali in your open source project, but it is not compatible with the AGPL, please contact me and we can discuss a separate license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sequali-0.12.0.tar.gz (3.0 MB view details)

Uploaded Source

Built Distributions

sequali-0.12.0-cp313-cp313-win_amd64.whl (560.9 kB view details)

Uploaded CPython 3.13 Windows x86-64

sequali-0.12.0-cp313-cp313-musllinux_1_2_x86_64.whl (570.3 kB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ x86-64

sequali-0.12.0-cp313-cp313-musllinux_1_2_aarch64.whl (561.8 kB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ ARM64

sequali-0.12.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (566.2 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

sequali-0.12.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (560.7 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ ARM64

sequali-0.12.0-cp313-cp313-macosx_11_0_arm64.whl (551.2 kB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

sequali-0.12.0-cp313-cp313-macosx_10_13_x86_64.whl (557.7 kB view details)

Uploaded CPython 3.13 macOS 10.13+ x86-64

sequali-0.12.0-cp312-cp312-win_amd64.whl (561.0 kB view details)

Uploaded CPython 3.12 Windows x86-64

sequali-0.12.0-cp312-cp312-musllinux_1_2_x86_64.whl (570.3 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

sequali-0.12.0-cp312-cp312-musllinux_1_2_aarch64.whl (561.8 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARM64

sequali-0.12.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (566.3 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

sequali-0.12.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (560.8 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

sequali-0.12.0-cp312-cp312-macosx_11_0_arm64.whl (551.2 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

sequali-0.12.0-cp312-cp312-macosx_10_13_x86_64.whl (557.7 kB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

sequali-0.12.0-cp311-cp311-win_amd64.whl (560.9 kB view details)

Uploaded CPython 3.11 Windows x86-64

sequali-0.12.0-cp311-cp311-musllinux_1_2_x86_64.whl (570.0 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

sequali-0.12.0-cp311-cp311-musllinux_1_2_aarch64.whl (561.7 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARM64

sequali-0.12.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (565.8 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

sequali-0.12.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (560.6 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

sequali-0.12.0-cp311-cp311-macosx_11_0_arm64.whl (551.1 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

sequali-0.12.0-cp311-cp311-macosx_10_9_x86_64.whl (557.6 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

sequali-0.12.0-cp310-cp310-win_amd64.whl (560.9 kB view details)

Uploaded CPython 3.10 Windows x86-64

sequali-0.12.0-cp310-cp310-musllinux_1_2_x86_64.whl (570.1 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

sequali-0.12.0-cp310-cp310-musllinux_1_2_aarch64.whl (561.8 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARM64

sequali-0.12.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (566.0 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

sequali-0.12.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (560.6 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

sequali-0.12.0-cp310-cp310-macosx_11_0_arm64.whl (550.9 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

sequali-0.12.0-cp310-cp310-macosx_10_9_x86_64.whl (557.3 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

sequali-0.12.0-cp39-cp39-win_amd64.whl (561.0 kB view details)

Uploaded CPython 3.9 Windows x86-64

sequali-0.12.0-cp39-cp39-musllinux_1_2_x86_64.whl (570.1 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

sequali-0.12.0-cp39-cp39-musllinux_1_2_aarch64.whl (561.8 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ARM64

sequali-0.12.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (566.0 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

sequali-0.12.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (560.6 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

sequali-0.12.0-cp39-cp39-macosx_11_0_arm64.whl (550.9 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

sequali-0.12.0-cp39-cp39-macosx_10_9_x86_64.whl (557.3 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

sequali-0.12.0-cp38-cp38-win_amd64.whl (561.0 kB view details)

Uploaded CPython 3.8 Windows x86-64

sequali-0.12.0-cp38-cp38-musllinux_1_2_x86_64.whl (570.1 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ x86-64

sequali-0.12.0-cp38-cp38-musllinux_1_2_aarch64.whl (561.7 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ ARM64

sequali-0.12.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (566.0 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

sequali-0.12.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (560.6 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

sequali-0.12.0-cp38-cp38-macosx_11_0_arm64.whl (550.9 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

sequali-0.12.0-cp38-cp38-macosx_10_9_x86_64.whl (557.3 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file sequali-0.12.0.tar.gz.

File metadata

  • Download URL: sequali-0.12.0.tar.gz
  • Upload date:
  • Size: 3.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for sequali-0.12.0.tar.gz
Algorithm Hash digest
SHA256 14ddcfbe91ab4e941c4e20f0e93e3ad83fba80aca40a3c3c499acd19ac0b9f3c
MD5 e934ca4a8ead18200548b0c8cb5c765b
BLAKE2b-256 bb7ae588b77377032c6ca753199d7f2003ee6a8358d9b7abba6c26f249345c3d

See more details on using hashes here.

File details

Details for the file sequali-0.12.0-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: sequali-0.12.0-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 560.9 kB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for sequali-0.12.0-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 e82b34eace77feeb12b6fd4c26efcfaa00630f883bdc66ecc65f597358f9f4db
MD5 769d87fc69005ab7c59376071531621a
BLAKE2b-256 a472a9acf21c71eb3b4a9d6b1e8bb1e01118ebed9697c663d56217f811af33bb

See more details on using hashes here.

File details

Details for the file sequali-0.12.0-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for sequali-0.12.0-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 69770479467725318dc8d26f07d325bb4f171fd0aa52f85302467293045a2d93
MD5 e7ab7418dcc6a0583e01cbb12c6a98cd
BLAKE2b-256 6b63a3de0280fdf52ab221ee8d2756ed8d78bbff348c30468afc4adf233282fe

See more details on using hashes here.

File details

Details for the file sequali-0.12.0-cp313-cp313-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for sequali-0.12.0-cp313-cp313-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 5d4a8b6b95acd9f14bd383e8fa0b6b4fcfdfeb35fbb50a8ca9f986a76a531841
MD5 140b08536cef26b44727ef857759c05c
BLAKE2b-256 59f068b9977309a748923af06c09d633af29029784a815f3c752a229698e4a57

See more details on using hashes here.

File details

Details for the file sequali-0.12.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sequali-0.12.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 00f6bf9fb6de735467a3fe02e1da5fec2af536079bc9a483ddd8841e4f83dede
MD5 1d5b3b82c75d3e7ca100842b755cb479
BLAKE2b-256 ae7c144a71c8f18f0546f1e0820fadd102d9f73eda57530412b9328ee783c064

See more details on using hashes here.

File details

Details for the file sequali-0.12.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for sequali-0.12.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c9554c73a6c4e03dcbd82c6f9fa6e6aca4cf27cf0c11507b8b152d5d2f7969b3
MD5 c51569519979c73f52f61c37d2eafba5
BLAKE2b-256 c086ffe10995a075fa45f3d709d4aeccc168bc4617ab0eba2fa0b37c08aa4535

See more details on using hashes here.

File details

Details for the file sequali-0.12.0-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for sequali-0.12.0-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 95cb2537e4d80cb4257018dc4d6f8dd01364c403d084b400837a946d925aadaa
MD5 3abf143379fd839b603e443845611136
BLAKE2b-256 30db7adf4d297de3f5e7d05630adbb15c15d67e8bb85d54c829d8a1149472ee7

See more details on using hashes here.

File details

Details for the file sequali-0.12.0-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for sequali-0.12.0-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 06501e189d088d1c1335fa901257f9cfb31f2d605f02decb77c00fe605ccb1a4
MD5 d260b44dab460a6d742fb9b5c9417f82
BLAKE2b-256 1c02c4592e425d742113637d173ceebb29884363a8797466d4e16946f555a3cb

See more details on using hashes here.

File details

Details for the file sequali-0.12.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: sequali-0.12.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 561.0 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for sequali-0.12.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 fb0d2e8084fa353a10f958633ee6da0fe2105ffbec00f47173f8cc7120a49ac0
MD5 0fe3fb2da01cc11b1a69efabcc4520f1
BLAKE2b-256 f605c88b31edb669ce4ce2a17975e575efbb752ec742fdeda94731367782670e

See more details on using hashes here.

File details

Details for the file sequali-0.12.0-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for sequali-0.12.0-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 03043456b2ad5f75e1ddd70424eb76ca68b5e07de9d18d709f45401e685d8501
MD5 b58c318e3b55db7d952a4b570e02bb64
BLAKE2b-256 e75a9f98a472d2f9a3ef3c56f0bb192b1890d0bd0bbf18e45dc6d61eb2375c6d

See more details on using hashes here.

File details

Details for the file sequali-0.12.0-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for sequali-0.12.0-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 d189b1f35f5152e875905c5130cdbf3e3ba09f401b61f0073b13893dc2fa464b
MD5 848ee62132951520e357b84a193df95b
BLAKE2b-256 31c10226209865fa3513698239e7df26f6bb083bfc3fe66f4ceabb4f89732f00

See more details on using hashes here.

File details

Details for the file sequali-0.12.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sequali-0.12.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f5e9b744bb425d5d8d1832a98ea82b0c7b1864473e81eff1cb2c5cd8de5141ad
MD5 ec7602646ada4f88b9bcffe3acce813b
BLAKE2b-256 e2d357dcf3e943729ebd1c3a682dce8c0e4b84f2aec1ab0f5cde674da2101970

See more details on using hashes here.

File details

Details for the file sequali-0.12.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for sequali-0.12.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d9d8a42362d1347a2630886f5f094c95aa784c4bc04a01398f4cce624fc1371b
MD5 b650db9d713ddfded829626b6da6435c
BLAKE2b-256 420a51c5c9b6d09aa723a453889b7cb75917110c53ce8cb475102ed00557a102

See more details on using hashes here.

File details

Details for the file sequali-0.12.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for sequali-0.12.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 582dd0abf3fee84ab1b138910c60ba871a8c22452dfdd611d517fa79d4843d22
MD5 afd9140493c24dc82e402d5c1af157ac
BLAKE2b-256 94a42195d829d5c5b682d79d72b08d2776a0de51dd178bd4609370fc5c09cdbb

See more details on using hashes here.

File details

Details for the file sequali-0.12.0-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for sequali-0.12.0-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 e1e2318daaee6043affaa128943492b20c2becf45ac03bf534c7faaef8f39472
MD5 a956a416a079a257dd69868b0ec5c207
BLAKE2b-256 beb1358ac936e9d4d9e54bb302bd41284bbddfb60b35cd062c7ed87d59ea948b

See more details on using hashes here.

File details

Details for the file sequali-0.12.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: sequali-0.12.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 560.9 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for sequali-0.12.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 02635191665c6e594782b370fddecfcd9d0277a49f9c42fcf59c652e741786bb
MD5 14a3cebb69d27169b1b734bdedea33cb
BLAKE2b-256 2c53d82fcc7545b88e0e806faf5106de891ad66744cb1685da209774986424e6

See more details on using hashes here.

File details

Details for the file sequali-0.12.0-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for sequali-0.12.0-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 b1218712fc2362c8234005672198228948f5ffe0c45fbe0cf60be3d5cda9a313
MD5 c085c842fbe247716f63584bb9567aa5
BLAKE2b-256 595f8ac821c7295ce2510f9d5a594d0b0ad3b9a38f0c8db7babf2b592dc9d9d8

See more details on using hashes here.

File details

Details for the file sequali-0.12.0-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for sequali-0.12.0-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 7f7331cf304e9268260d57e841a8c16b11a786b3ffca074faf54ef80380d357d
MD5 6ede09315c5f02b870f8b9b98063e359
BLAKE2b-256 2e463655ea323064b1cc438111f141b0b7352511068d2205937447d58b1bbaba

See more details on using hashes here.

File details

Details for the file sequali-0.12.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sequali-0.12.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dc1064f855abebb3ae529a586dbcd322f4062e1f52c1ae118f63bbc777df6e02
MD5 a52f2bcb54cd3a890eff5dd24696149d
BLAKE2b-256 96548786fad8fd98645b2036247255c807364714d9a6510761f32cd85a1c8cf9

See more details on using hashes here.

File details

Details for the file sequali-0.12.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for sequali-0.12.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 efe5b45b901f7b2aeaea372ab75d097b628fa7af2387d074820707742ba61a60
MD5 24ff820e89d82e45e5ff095c27d7730d
BLAKE2b-256 c811d86229fdf2385955f6c1391d3831b4024ad6ec4a8545eaadc4e2d02f54ce

See more details on using hashes here.

File details

Details for the file sequali-0.12.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for sequali-0.12.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b41bbe4f049e7562c56850643433725e1d7da484bdf93929de764279c16a0910
MD5 8e0045d0fa1a17a5c1f0ebabb72af810
BLAKE2b-256 12d84cb77613420a269d16d457dd3d3f143f8377a1f72da99026267d193e95c7

See more details on using hashes here.

File details

Details for the file sequali-0.12.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for sequali-0.12.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 90e002379f9fdbdf31d853a17def985c1b972042158a87599c5f09a866d4a359
MD5 8d6995c8b7ba7499f4a6fec2413a5ad9
BLAKE2b-256 25e038e6cb68775d5f430bd105874aa0e84de26bace333b79a567fef3a7292e2

See more details on using hashes here.

File details

Details for the file sequali-0.12.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: sequali-0.12.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 560.9 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for sequali-0.12.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 b5046f2cc384c4087426df42626ae77bbf358f5d369dfa1ddbe35e6bbf840ed2
MD5 43b4889a1085af2b4f909c7b014d66a6
BLAKE2b-256 ebc94f2e87a8e1e782492a0096aa955d9deec5688328e82765803be041302f1a

See more details on using hashes here.

File details

Details for the file sequali-0.12.0-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for sequali-0.12.0-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 6ac202fbeabd14db456c1adc507548611438d5b24452b3171a7f4adf6f0db057
MD5 149e4ba44dd1d21946598b88bb7ba233
BLAKE2b-256 8d9640571a88e1b270bee3f8a1eeb662a92194d8d23e8544bd30b7863f8bba5e

See more details on using hashes here.

File details

Details for the file sequali-0.12.0-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for sequali-0.12.0-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 b75a57d2331f7498fb02aceb2122f143358264f286d738c9580eee528d5ad1a7
MD5 0e78b579219096a9b9c38a2f6e57dab6
BLAKE2b-256 f24eb334ab38a223652257afbd8048e4cf36f85795cb134639f9d4ea78a70155

See more details on using hashes here.

File details

Details for the file sequali-0.12.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sequali-0.12.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e44a1defb279473e9a790b962b44b733a73166e5fae32d26d003d59e85c20ac7
MD5 14c180ed949df7f1902e65853a257c21
BLAKE2b-256 d4d47ea9a20807fb29e0630eaacd30cae8f27db0647e71fe641fb09baefeadf5

See more details on using hashes here.

File details

Details for the file sequali-0.12.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for sequali-0.12.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5c7bb577993d42c73bb7197929c7f7543019b743f2b9b95f3a36057bd88c848a
MD5 d640d88f884546ba28a959b43f8fde89
BLAKE2b-256 4918e63283783275ce9529f0aa0f7cc6757313c725d892d49c33e374f5f95799

See more details on using hashes here.

File details

Details for the file sequali-0.12.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for sequali-0.12.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 61ea4bcb8991968f0138b69dae965cb983fce7ffc07a47aefe6c862da4474bda
MD5 a2e4de37ac5a01c60bf16738b8bb30bd
BLAKE2b-256 77f1fbff1d178b7452256a20d178664bf527e57835ab3b50301c470fb5b8e554

See more details on using hashes here.

File details

Details for the file sequali-0.12.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for sequali-0.12.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d26025ff6f43adbeb5235e6ec34a7d627ddedfae67ce9daff2f6ae5283a47208
MD5 1b89ed04e4991209d761fe4875bba96e
BLAKE2b-256 d0a7f99e43f5f9ea0c9b537a3f7b55a2c003b796a7ab0d8167ceb815230e28c6

See more details on using hashes here.

File details

Details for the file sequali-0.12.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: sequali-0.12.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 561.0 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for sequali-0.12.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 b1f371b80f5dd2e1d9a5ea0278b60544b08b06efc752935737954b59bcb5846d
MD5 df9c49b04e3b412cf350ddb8bdd7c7b9
BLAKE2b-256 8e50dd8071013188067ad35e16927548fba7a37553b4066a01ddf8d5a0b72391

See more details on using hashes here.

File details

Details for the file sequali-0.12.0-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for sequali-0.12.0-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 ffe83989fa554f5a9fff26c7492b12c033ee4b0c675c40fbf7d58b4516dd1f6c
MD5 be10e14dc2cfb11aa1bfb28e7406946a
BLAKE2b-256 6b374e26d8694aa933992863d8cb1e566b9b44d2524e08d93378517c8c7b076a

See more details on using hashes here.

File details

Details for the file sequali-0.12.0-cp39-cp39-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for sequali-0.12.0-cp39-cp39-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 33b061857dc60c151991351a1f0fcdba6d80216dfd1af180b75e5e6d4317c614
MD5 fc496f2a3bee942e3a79256e9b9845e6
BLAKE2b-256 9c0aae656ce3b1635dca25ec15401e47f2d1480b301937aaeccb33ba0f30c776

See more details on using hashes here.

File details

Details for the file sequali-0.12.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sequali-0.12.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1cc3a07020c41f048bd33bf9a5e6e6828ed5f674fb268a04ad58c4de9f999ce9
MD5 968ed7eb905192b49de524eb988a0af1
BLAKE2b-256 cbc5704201e5d25b093867ae2b48a19ea7340ce86a1d110f56d9bb24c0003e2f

See more details on using hashes here.

File details

Details for the file sequali-0.12.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for sequali-0.12.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6bb60be4771fc884138a61ea713cf1b44230d722afcb88e95202cc0136a9ef86
MD5 3f905fd15ec90cfafc08056d35ca8a55
BLAKE2b-256 afdca3226f70ab2c95774afc65dad8ac2689feeb55df201abd81ba292385af3a

See more details on using hashes here.

File details

Details for the file sequali-0.12.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for sequali-0.12.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fb01ef2fed8675efca87d1d1edd9d8edfb4b9bf9f70549f597dba8b1356a88dd
MD5 5ace4b0ee7bd09bb256e55f2b7160093
BLAKE2b-256 d29ced63cb60335d70e4910b745ed4b24e58d611187fa8cbb7110a26f525e567

See more details on using hashes here.

File details

Details for the file sequali-0.12.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for sequali-0.12.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0787cf8201cdfddc66b30c46d3c8c3aaf79b2c9b02442fbe717c9ff0fe86075d
MD5 cdfa9dfb000147aafe5515a328c177c1
BLAKE2b-256 3b6d90dff60a3219798b9b75a8184f1faa1ff5e30ef5ba9aa455f19c80d77aef

See more details on using hashes here.

File details

Details for the file sequali-0.12.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: sequali-0.12.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 561.0 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for sequali-0.12.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 969cc8b36def97f79d318c55d3705872d8f90acc45544e8fa69b9d4724d7ebdd
MD5 288866d377e866f719f240983e651902
BLAKE2b-256 32afcf737d88be1eb425e18b366586637909e06bddec99f0b037576af4f6595c

See more details on using hashes here.

File details

Details for the file sequali-0.12.0-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for sequali-0.12.0-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 435859fa4da95be7a12b76a3969153d21b3f1fcc36a142c5ada06b59bce4dbcc
MD5 2cca360f5e51d5868168ed87a07675b4
BLAKE2b-256 b9a8bbceca3ca19cd1f0c2c269c0e4069a8c41226995bdd5142f70208aa86bb5

See more details on using hashes here.

File details

Details for the file sequali-0.12.0-cp38-cp38-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for sequali-0.12.0-cp38-cp38-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 b42d49b1c8c4ae3f68f1ede2a99c1713362b0ad7e0486ab5b1ab05db02847141
MD5 9bcbadcc2fdf2f607fbbc2893eb0f737
BLAKE2b-256 534f1911103fff44bb705fe0b4f1ac524bcdec1c7521e361111ee85a10e90fae

See more details on using hashes here.

File details

Details for the file sequali-0.12.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sequali-0.12.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 11761a75a80f4b6b1e0900aa8870cc690d84e816299a577365aeba04c949633c
MD5 a0b6b10605f286e802809ddb48fc3faa
BLAKE2b-256 63db5aebb2ec07a88f47ae853ca82906d946721c81be10b62293cea99d4adce1

See more details on using hashes here.

File details

Details for the file sequali-0.12.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for sequali-0.12.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b0c6d37250f277400d316cac1fd8fc0bd45066b4908e65eb5394ee501adebb1c
MD5 4a97a5c2aaf88b73281acba0503ead4e
BLAKE2b-256 ddd4b599abda40d1c5504f0a00f21c32584b286948bd54b324327b71604a2475

See more details on using hashes here.

File details

Details for the file sequali-0.12.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for sequali-0.12.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 572f5a0b32dc84a22e0949d24ab9c6c32118fd9ffb28341b65256a7504acf92d
MD5 5939c4cb21920c5def581d44f7965775
BLAKE2b-256 a16a8e790e627339da8587d1844de6aef5788d93a4bb19b61eb7b9a9a656a4ae

See more details on using hashes here.

File details

Details for the file sequali-0.12.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for sequali-0.12.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c11f493325bd72332e360002ec3c72646d42978d658ba10a9b9aa885e352a6a6
MD5 e0eb5c9df871a16ba8786738a6817918
BLAKE2b-256 6763f440a87d1a2dd7642d5afd8e4926e0415a54de79364ae453811b9447404b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page