A Python package to detect solvent-exposed residues of a target biomolecule.
Project description
A Python package to detect solvent-exposed residues of a target biomolecule.
Installation
The prerequisites for installing SERD is SWIG, Python v3 and PyMOL v2.
To install the latest release on PyPI, run:
pip install SERD
Or to install the latest developmental version, run:
git clone https://github.com/jvsguerra/SERD.git pip install SERD
License
The software is licensed under the terms of the GNU General Public License version 3 (GPL3) and is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distributions
File details
Details for the file SERD-0.1.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: SERD-0.1.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 217.0 kB
- Tags: CPython 3.10, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.10.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 47cc063d6d9e515d7032055a9e2eb453120852cb5ad74dc9f7b55b2a6e946285 |
|
MD5 | 69c6375a2ee8a4dce21035cf47005719 |
|
BLAKE2b-256 | a84abde8ac1578185f7127e69eaedd144517057de8ff405bcb1c20ba7e2943ed |
File details
Details for the file SERD-0.1.2-cp310-cp310-macosx_10_15_x86_64.whl
.
File metadata
- Download URL: SERD-0.1.2-cp310-cp310-macosx_10_15_x86_64.whl
- Upload date:
- Size: 140.7 kB
- Tags: CPython 3.10, macOS 10.15+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.10.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | fef546c6191e2f4618564a9aaf8d8c5c44ada1923842bcbd2fdff368f992938d |
|
MD5 | 31dfcd19f9c732ede570ce2528da87e1 |
|
BLAKE2b-256 | 25403920d367663cedb3eda3e85cb3481d672d47d321121fc538a1fa6685b4ea |
File details
Details for the file SERD-0.1.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: SERD-0.1.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 216.4 kB
- Tags: CPython 3.9, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.10.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 40a76dd876cbb8d5d64b70dddc2f92f7566d95e03ed745940048e4bb17354c4d |
|
MD5 | 5f6107fe217867d9ba40ec1413828c3f |
|
BLAKE2b-256 | 59ce6b897b2ac0e64a4ac798a800fe9070f028949fe4d489ad014b07746c4915 |
File details
Details for the file SERD-0.1.2-cp39-cp39-macosx_10_15_x86_64.whl
.
File metadata
- Download URL: SERD-0.1.2-cp39-cp39-macosx_10_15_x86_64.whl
- Upload date:
- Size: 140.7 kB
- Tags: CPython 3.9, macOS 10.15+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.14
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c42cd1497df0a704f836c5b78bcb3256127570a85a87f6ef5007c6e5346d1298 |
|
MD5 | aabc3734f82ae6ea0b446ee4124d7163 |
|
BLAKE2b-256 | 9ae837355db846d389e65e8dbb5e60faf5b1bf586c348e504bb460bcebc4768f |
File details
Details for the file SERD-0.1.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: SERD-0.1.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 213.2 kB
- Tags: CPython 3.8, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.10.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 96a9d772fe44a938f7442edf7a826d9f1346d218fc676f4c12a85d120655e37b |
|
MD5 | 7db81f1a1bf149a604b02cac41559700 |
|
BLAKE2b-256 | b246f89f16e5c98d140231c1ec2c8b1dcfbc1f626b191eed10a58a3dffd6576e |
File details
Details for the file SERD-0.1.2-cp38-cp38-macosx_10_15_x86_64.whl
.
File metadata
- Download URL: SERD-0.1.2-cp38-cp38-macosx_10_15_x86_64.whl
- Upload date:
- Size: 141.2 kB
- Tags: CPython 3.8, macOS 10.15+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.8.14
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 59c877bfb0fc164a7fd39e7a30fcb205344c16774b7b076ec010e312f6cf74f0 |
|
MD5 | 9ecfdcee7819d2c39e1acdf23240ebdc |
|
BLAKE2b-256 | 607baa3a57699a727ec6148e78f5187a2eb181c32db8971d723a64274e88da67 |