Skip to main content

人工智能_量化交易_金融数据预处理

Project description

人工智能训练中,对于时间断层数据的处理工具包

process serial data for AI training

  • 根据断点,分配数据集,保证训练数据的连续性 allocate data set according to breakpoints, to ensure the continuity of training data

生成训练数据(避开数据断点)

# 注意:
# 传入的数据必须指定时间列(或其他顺序列)
# 传入的数据必须已按顺序排列好

# Attention:
# You must specify the time column (or other sequential column) of the incoming pd原始数据
# The incoming pd原始数据 must be sorted in order

from datetime import timedelta
from serial_data_handler_zxw import 生成训练数据_避开时间断点, 时间列_三角函数化
import pandas as pd

csv_path = "/Volumes/time_serial_data.csv"
data = pd.read_csv(csv_path)


# 指定时间列为'收盘时间',
# 设置断点为2分钟,
# 即如果两个相邻的原始数据pd间隔大于2分钟,则认为是一个断点

# specific the time column named '收盘时间' , 
# and set the gap is 2 minutes , 
# it means that if the gap between two adjacent pd原始数据 > 2 minutes, it will be considered as a breakpoint
x = 生成训练数据_避开时间断点(data, column_timestamp='收盘时间', gap=timedelta(minutes=2))
print(x.断点)
训练数据index = x.数据划分_避开断点(input长度=100, output长度=100, step=1)
print(len(训练数据index))


# 如果您的数据间隔小于1秒,请做相应的乘法转换, 例如: 1毫秒的数据,请乘以1000,转换为秒级数据
# 时间列_三角函数化

# If your pd原始数据 interval < 1s, please do the corresponding multiplication conversion
# for example: 1ms pd原始数据, you should multiply by 1000, convert to second-level pd原始数据
# time column trigonometric function
data['收盘时间'] = pd.to_datetime(data['收盘时间'])
data['收盘时间'] = 时间列_三角函数化(data['收盘时间'], 周期=timedelta(days=1))
print(data['收盘时间'])

多尺度时间数据的对齐

import pandas as pd
from datetime import datetime
from serial_data_handler_zxw import 时间序列_数据对齐

data = pd.read_csv('/Volumes/AI_1505056/量化交易/币安_K线数据_1d/BTCUSDT-1m-201909-202308.csv')

# to datetime
data['收盘时间'] = pd.to_datetime(data['收盘时间'])

# 时间序列_数据对齐
数据预处理 = 时间序列_数据对齐(data, '收盘时间')
i = 数据预处理.查找_时间范围(datetime(2023, 8, 29, 16, 54, 0), 查找精度='1d')
print(i)

pytorch的金融K线数据预处理

from serial_data_handler_zxw import 金融K线_AI数据预处理 as kAI

# 输出注意事项, 使用方法
kAI.金融K线_AI数据预处理.help()

# 数据标准化
csv_file = "/Volumes/AI_1505056/量化交易/币安_K线数据/BTCUSDT-1m-201909-202308.csv"
x = kAI.金融K线_AI数据预处理(csv_file, 100, 100)
xn = x.标准化(x.pd原始数据)

# 适用dateset的__getitem__(i)的数据获取
x.dataset__len__(是训练集=True)  # 是训练集=False时, 调用测试集数据
x.dataset__get_item__(i=0, data=xn, 是训练集=True)

python setup.py sdist bdist_wheel twine upload dist/* twine upload dist/serial_data_handler_zxw-0.6.0-py3-none-any.whl

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

serial_data_handler_zxw-0.6.1-py3-none-any.whl (10.6 kB view details)

Uploaded Python 3

File details

Details for the file serial_data_handler_zxw-0.6.1-py3-none-any.whl.

File metadata

File hashes

Hashes for serial_data_handler_zxw-0.6.1-py3-none-any.whl
Algorithm Hash digest
SHA256 4ef8c03233f624cb7bee10f0a21a70eb96c3fa82abcdaed065d94a3364d7362a
MD5 69999008429a7de025c7ecaf1673af77
BLAKE2b-256 73b1bc0559477ad29d28ffb0f0826e3e87b40419573f5cdba321d517dbc30a5c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page