Skip to main content

Easy Time Series Dataset with PyTorch.

Project description

SerieSet: Easy Time Series Dataset with PyTorch

💡 What's SerieSet?

We need an easy and (relatively) general dataset builder for time series model training. This project only relies on PyTorch, Pandas, and Numpy.

⬇️ Installation

pip install serieset

</> API details

data (pandas.DataFrame): dataframe with single or multiple time series, group_id, date_col, target_col columns are expected, features columns are optional.

inp_len (int): input sequence length. i.e. 96.

pred_len (int): prediction sequence length. i.e. 14.

target_col (str): target time series column name (i.e., airport volume, store sales).

date_col (str): date column name. i.e. "date".

group_id (Union[str, List[str]]): group id column name. i.e. "store_name" or ["store_name", "product_id"].

features (Optional[Union[str, List[str]]]): feature column name. i.e. "volume" or ["volume", "price"]. All features should be numeric.

train_val_split_date (str): date for train-validation split. i.e. "2019-01-01". Default is None. If 'last', the last inp_len + pred_len data will be used for validation.

dtype (str): data type of torch data tensor. Default is "float32".

mode (str): train or validation.

💡 Example

import pandas as pd
from serieset import TimeSeriesDataset

data = pd.read_csv("./data/ETTh1.csv")
data["group_id"] = "ETTh1"

print(data.head())
print(f"minimum date: {data['date'].min()}")
print(f"maximum date: {data['date'].max()}")

params = {
    'target_col': 'OT',
    'features': ["HUFL", "HULL"],
    'group_id': 'group_id',
    'date_col': 'date',
    'inp_len': 36,
    'pred_len': 12,
    'train_val_split_date': '2018-01-01 00:00:00',
    'mode': 'train',
}

torch_dataset = TimeSeriesDataset(
    data=data,
    **params
)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

serieset-0.1.0-py3-none-any.whl (4.2 kB view details)

Uploaded Python 3

File details

Details for the file serieset-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: serieset-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 4.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.8.19

File hashes

Hashes for serieset-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 0f65521dd48b483d84d2e217a13ff6d3688cc1215748374da9e66a0b99e222c6
MD5 3ecee027a8d0a1b42e40fb1f5a3e62b0
BLAKE2b-256 705b1b8c367528a3de6fcc2f7682c9d058a867982619b4dfb74f9e2cc453e590

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page