No project description provided
Project description
serpyco-rs: a serializer for python dataclasses
What is serpyco-rs ?
Serpyco is a serialization library for Python 3.9+ dataclasses that works just by defining your dataclasses:
import dataclasses
import serpyco_rs
@dataclasses.dataclass
class Example:
name: str
num: int
tags: list[str]
serializer = serpyco_rs.Serializer(Example)
result = serializer.dump(Example(name="foo", num=2, tags=["hello", "world"]))
print(result)
>> {'name': 'foo', 'num': 2, 'tags': ['hello', 'world']}
serpyco-rs works by analysing the dataclass fields and can recognize many types : list
, tuple
, Optional
...
You can also embed other dataclasses in a definition.
The main use-case for serpyco-rs is to serialize objects for an API, but it can be helpful whenever you need to transform objects to/from builtin Python types.
Installation
Use pip to install:
$ pip install serpyco-rs
Features
- Serialization and unserialization of dataclasses
- Validation of input/output data
- Very fast
Supported field types
There is support for generic types from the standard typing module:
- Decimal
- UUID
- Time
- Date
- DateTime
- Enum
- List
- Dict
- Mapping
- Sequence
- Tuple (fixed size)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
File details
Details for the file serpyco_rs-0.1.4.tar.gz
.
File metadata
- Download URL: serpyco_rs-0.1.4.tar.gz
- Upload date:
- Size: 27.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/0.13.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b02aa9798dbc337bd431eb5fbd7267c3b7d20ba07f4fcaeb29a664ff1ce178df |
|
MD5 | 9bbec4c51a5c6194ed1f1f5394c63324 |
|
BLAKE2b-256 | 21871ebb0e817578268e218ffa9bb71b17462bbafc91f508b7b32783634426b7 |
File details
Details for the file serpyco_rs-0.1.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: serpyco_rs-0.1.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 1.1 MB
- Tags: PyPy, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/0.13.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a6894a20c08544fc5b906e29d74a58fd05e5fa8f5a43646237c16e114551dd2e |
|
MD5 | 587ab00e2675c71a9dc334775cd7c06b |
|
BLAKE2b-256 | f6e1511efd6c0fedc06ba03edb0d3ed280197724700abbd98a078324ae2a1baf |
File details
Details for the file serpyco_rs-0.1.4-cp311-none-win_amd64.whl
.
File metadata
- Download URL: serpyco_rs-0.1.4-cp311-none-win_amd64.whl
- Upload date:
- Size: 176.6 kB
- Tags: CPython 3.11, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/0.13.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 11a1eab337b1d70cfe411d5c43469423e791ee1c6a28ec516c1c9a32af845082 |
|
MD5 | f72ceef64aa89a4d905b27ea1f7e53c5 |
|
BLAKE2b-256 | 3ef5bdae6cccf9b821228646be1ef12c1769b82f4706551a4e27d29362aa112b |
File details
Details for the file serpyco_rs-0.1.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: serpyco_rs-0.1.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 1.1 MB
- Tags: CPython 3.11, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/0.13.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 29be460047c95fea897788dca1145615500e8df1e4fa15b3b036ed58f5ee0d8c |
|
MD5 | e1bb53e733dadc6eb6fc9c8469c707ef |
|
BLAKE2b-256 | cff05ba0e5c72caa4709bf19130223df33ee4aed05a5e377ab853d31a73f89b4 |
File details
Details for the file serpyco_rs-0.1.4-cp311-cp311-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl
.
File metadata
- Download URL: serpyco_rs-0.1.4-cp311-cp311-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl
- Upload date:
- Size: 567.5 kB
- Tags: CPython 3.11, macOS 10.9+ universal2 (ARM64, x86-64), macOS 10.9+ x86-64, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/0.13.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 76e2a3c11d271a5af7e63c71214df1f58e9b5a7870ff28e2f19771d260cff76a |
|
MD5 | 3958a4ef08e471c0b580b5c5a362c055 |
|
BLAKE2b-256 | 83e3f7f556ab4ce246c27b9da0ac7ee30efd48d799d51c9c7ca1080381d6a3e0 |
File details
Details for the file serpyco_rs-0.1.4-cp310-none-win_amd64.whl
.
File metadata
- Download URL: serpyco_rs-0.1.4-cp310-none-win_amd64.whl
- Upload date:
- Size: 176.6 kB
- Tags: CPython 3.10, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/0.13.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 577dc0d46f5d8962381792a6123bbfb2d0b404c3e8a122a5f3425f03c19a9bfe |
|
MD5 | aedf81f38734a106e8852b241ed775c5 |
|
BLAKE2b-256 | a6a3927d4e40d51bc5072b829cf7e4e04b9b4e3042e0fddea1f97a63cf38370f |
File details
Details for the file serpyco_rs-0.1.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: serpyco_rs-0.1.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 1.1 MB
- Tags: CPython 3.10, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/0.13.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | da48f752a64779f6514e561036d2dc7ec206c38913a4d919a921f986bcbc113e |
|
MD5 | e697d1f2d4cd5a38640629e93d43ee4b |
|
BLAKE2b-256 | ac7add3f0e0a402a3ea884e6da2ee7c8d1e25ad09f244cb93443d39bf18adc8c |
File details
Details for the file serpyco_rs-0.1.4-cp310-cp310-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl
.
File metadata
- Download URL: serpyco_rs-0.1.4-cp310-cp310-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl
- Upload date:
- Size: 567.5 kB
- Tags: CPython 3.10, macOS 10.9+ universal2 (ARM64, x86-64), macOS 10.9+ x86-64, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/0.13.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 83d48f5de86e135cbbb5f538f24947c31ae93ebc71497be52be38c24d92f3845 |
|
MD5 | 6257d9fcdaad141d21bfc79326894934 |
|
BLAKE2b-256 | 8546d230eb272280dfd4bbb67e2f63633f54ff980067cbfa535508156e07bdcc |
File details
Details for the file serpyco_rs-0.1.4-cp39-none-win_amd64.whl
.
File metadata
- Download URL: serpyco_rs-0.1.4-cp39-none-win_amd64.whl
- Upload date:
- Size: 176.8 kB
- Tags: CPython 3.9, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/0.13.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 62e9fcd643c88b97b36c50197a81384d69c4996ed6a1982cb95c65810f1b3bb5 |
|
MD5 | 72b3b5d9db0dc45d761f8c12004a5ecb |
|
BLAKE2b-256 | 8e5ec1a4af95025ed42f8d42d59f7a7f4158ed0fea4bb8282f3153b859211adc |
File details
Details for the file serpyco_rs-0.1.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: serpyco_rs-0.1.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 1.1 MB
- Tags: CPython 3.9, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/0.13.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f170fbc6eee88f14ed87134e16db8ae40d684971cf20dc91bcb9937e7d4dd5b7 |
|
MD5 | 7363b30374d90e74c420c9553b9bc68d |
|
BLAKE2b-256 | 78e109db406bd0e28701e19b27ac34d811d3d6eccae942c5ca04958e12b83269 |
File details
Details for the file serpyco_rs-0.1.4-cp39-cp39-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl
.
File metadata
- Download URL: serpyco_rs-0.1.4-cp39-cp39-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl
- Upload date:
- Size: 568.1 kB
- Tags: CPython 3.9, macOS 10.9+ universal2 (ARM64, x86-64), macOS 10.9+ x86-64, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/0.13.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9984caa646fc011ac8c4c602acde3d68161678d612c1c7a4837714d713b7cfb4 |
|
MD5 | bd3de6ba5d4860e16abe4fe02385c9c5 |
|
BLAKE2b-256 | d2083b11c115cdcd9d0560b7219aab1f73dd89b351b9d8f48e4bf40da27c3733 |