No project description provided
Project description
serpyco-rs: a serializer for python dataclasses
What is serpyco-rs ?
Serpyco is a serialization library for Python 3.9+ dataclasses that works just by defining your dataclasses:
import dataclasses
import serpyco_rs
@dataclasses.dataclass
class Example:
name: str
num: int
tags: list[str]
serializer = serpyco_rs.Serializer(Example)
result = serializer.dump(Example(name="foo", num=2, tags=["hello", "world"]))
print(result)
>> {'name': 'foo', 'num': 2, 'tags': ['hello', 'world']}
Inspired by serpyco.
serpyco-rs works by analysing the dataclass fields and can recognize many types : list
, tuple
, Optional
...
You can also embed other dataclasses in a definition.
The main use-case for serpyco-rs is to serialize objects for an API, but it can be helpful whenever you need to transform objects to/from builtin Python types.
Installation
Use pip to install:
$ pip install serpyco-rs
Features
- Serialization and deserialization of dataclasses
- Validation of input data
- Very fast
- Support recursive schemas
- Generate JSON Schema Specification (Draft 2020-12)
- Support custom encoders/decoders for fields
Supported field types
There is support for generic types from the standard typing module:
- Decimal
- UUID
- Time
- Date
- DateTime
- Enum
- List
- Dict
- Bytes (pass through)
- TypedDict
- Mapping
- Sequence
- Tuple (fixed size)
- Literal[str, ...]
- Tagged unions (restricted)
Benchmarks
Linux
Load
Library | Median latency (milliseconds) | Operations per second | Relative (latency) |
---|---|---|---|
serpyco_rs | 0.16 | 6318.1 | 1 |
mashumaro | 0.45 | 2244.4 | 2.81 |
pydantic | 0.57 | 1753.9 | 3.56 |
serpyco | 0.82 | 1228.3 | 5.17 |
marshmallow | 8.49 | 117.4 | 53.35 |
Dump
Library | Median latency (milliseconds) | Operations per second | Relative (latency) |
---|---|---|---|
serpyco_rs | 0.07 | 13798 | 1 |
serpyco | 0.07 | 13622 | 1.02 |
mashumaro | 0.1 | 10219.5 | 1.36 |
pydantic | 0.22 | 4615.5 | 2.99 |
marshmallow | 2 | 497 | 27.69 |
MacOS
macOS Monterey / Apple M1 Pro / 16GB RAM / Python 3.11.0Load
Library | Median latency (milliseconds) | Operations per second | Relative (latency) |
---|---|---|---|
serpyco_rs | 0.1 | 9865.1 | 1 |
mashumaro | 0.2 | 4968 | 2 |
pydantic | 0.34 | 2866.7 | 3.42 |
serpyco | 0.69 | 1444.1 | 6.87 |
marshmallow | 4.14 | 241.8 | 41.05 |
Dump
Library | Median latency (milliseconds) | Operations per second | Relative (latency) |
---|---|---|---|
serpyco_rs | 0.04 | 22602.6 | 1 |
serpyco | 0.05 | 21232.9 | 1.06 |
mashumaro | 0.06 | 15903.4 | 1.42 |
pydantic | 0.16 | 6262.6 | 3.61 |
marshmallow | 1.04 | 962 | 23.5 |
Supported annotations
serpyco-rs
supports changing load/dump behavior with typing.Annotated
.
Currently available:
- Alias
- FieldFormat (CamelCase / NoFormat)
- NoneFormat (OmitNone / KeepNone)
- Discriminator
- Min / Max
- MinLength / MaxLength
- CustomEncoder
- NoneAsDefaultForOptional (ForceDefaultForOptional)
Alias
Alias
is needed to override the field name in the structure used for load
/ dump
.
from dataclasses import dataclass
from typing import Annotated
from serpyco_rs import Serializer
from serpyco_rs.metadata import Alias
@dataclass
class A:
foo: Annotated[int, Alias('bar')]
ser = Serializer(A)
print(ser.load({'bar': 1}))
>> A(foo=1)
print(ser.dump(A(foo=1)))
>> {'bar': 1}
FieldFormat
Used to have response bodies in camelCase while keeping your python code in snake_case.
from dataclasses import dataclass
from typing import Annotated
from serpyco_rs import Serializer
from serpyco_rs.metadata import CamelCase, NoFormat
@dataclass
class B:
buz_filed: str
@dataclass
class A:
foo_filed: int
bar_filed: Annotated[B, NoFormat]
ser = Serializer(Annotated[A, CamelCase]) # or ser = Serializer(A, camelcase_fields=True)
print(ser.dump(A(foo_filed=1, bar_filed=B(buz_filed='123'))))
>> {'fooFiled': 1, 'barFiled': {'buz_filed': '123'}}
print(ser.load({'fooFiled': 1, 'barFiled': {'buz_filed': '123'}}))
>> A(foo_filed=1, bar_filed=B(buz_filed='123'))
NoneFormat
Via OmitNone
we can drop None values for non required fields in the serialized dicts
from dataclasses import dataclass
from serpyco_rs import Serializer
@dataclass
class A:
required_val: bool | None
optional_val: bool | None = None
ser = Serializer(A, omit_none=True) # or Serializer(Annotated[A, OmitNone])
print(ser.dump(A(required_val=None, optional_val=None)))
>>> {'required_val': None}
Tagged unions
Supports tagged joins with discriminator field.
All classes in the union must be dataclasses or attrs with discriminator field Literal[str]
.
The discriminator field is always mandatory.
from typing import Annotated, Literal
from dataclasses import dataclass
from serpyco_rs import Serializer
from serpyco_rs.metadata import Discriminator
@dataclass
class Foo:
type: Literal['foo']
value: int
@dataclass(kw_only=True)
class Bar:
type: Literal['bar'] = 'bar'
value: str
ser = Serializer(list[Annotated[Foo | Bar, Discriminator('type')]])
print(ser.load([{'type': 'foo', 'value': 1}, {'type': 'bar', 'value': 'buz'}]))
>>> [Foo(type='foo', value=1), Bar(type='bar', value='buz')]
Min / Max
Supported for int
/ float
/ Decimal
types and only for validation on load.
from typing import Annotated
from serpyco_rs import Serializer
from serpyco_rs.metadata import Min, Max
ser = Serializer(Annotated[int, Min(1), Max(10)])
ser.load(123)
>> SchemaValidationError: [ErrorItem(message='123 is greater than the maximum of 10', instance_path='')]
MinLength / MaxLength
MinLength
/ MaxLength
can be used to restrict the length of loaded strings.
from typing import Annotated
from serpyco_rs import Serializer
from serpyco_rs.metadata import MinLength
ser = Serializer(Annotated[str, MinLength(5)])
ser.load("1234")
>> SchemaValidationError: [ErrorItem(message='"1234" is shorter than 5 characters', instance_path='')]
NoneAsDefaultForOptional
ForceDefaultForOptional
/ KeepDefaultForOptional
can be used to set None as default value for optional (nullable) fields.
from dataclasses import dataclass
from serpyco_rs import Serializer
@dataclass
class Foo:
val: int # not nullable + required
val1: int | None # nullable + required
val2: int | None = None # nullable + not required
ser_force_default = Serializer(Foo, force_default_for_optional=True) # or Serializer(Annotated[Foo, ForceDefaultForOptional])
ser = Serializer(Foo)
# all fields except val are optional and nullable
assert ser_force_default.load({'val': 1}) == Foo(val=1, val1=None, val2=None)
# val1 field is required and nullable and val1 should be present in the dict
ser.load({'val': 1})
>> SchemaValidationError: [ErrorItem(message='"val1" is a required property', instance_path='')]
Custom encoders for fields
You can provide CustomEncoder with serialize
and deserialize
functions, or serialize_with
and deserialize_with
annotations.
from typing import Annotated
from dataclasses import dataclass
from serpyco_rs import Serializer
from serpyco_rs.metadata import CustomEncoder
@dataclass
class Foo:
val: Annotated[str, CustomEncoder[str, str](serialize=str.upper, deserialize=str.lower)]
ser = Serializer(Foo)
val = ser.dump(Foo(val='bar'))
>> {'val': 'BAR'}
assert ser.load(val) == Foo(val='bar')
Note: CustomEncoder
has no effect to validation and JSON Schema generation.
Bytes fields
serpyco-rs
can loads bytes fields as is (without base64 encoding and validation).
from dataclasses import dataclass
from serpyco_rs import Serializer
@dataclass
class Foo:
val: bytes
ser = Serializer(Foo)
ser.load({'val': b'123'}) == Foo(val=b'123')
Getting JSON Schema
serpyco-rs
can generate JSON Schema for your dataclasses (Draft 2020-12).
from dataclasses import dataclass
from serpyco_rs import Serializer
@dataclass
class A:
"""Description of A"""
foo: int
bar: str
ser = Serializer(A)
print(ser.get_json_schema())
>> {
'$schema': 'https://json-schema.org/draft/2020-12/schema',
'$ref': '#/components/schemas/A[no_format,keep_nones]',
'components': {
'schemas': {
'A[no_format,keep_nones]': {
'properties': {
'foo': {'type': 'integer'},
'bar': {'type': 'string'}
},
'required': ['foo', 'bar'],
'type': 'object',
'description': 'Description of A'
}
}
}
}
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
File details
Details for the file serpyco_rs-1.1.1.tar.gz
.
File metadata
- Download URL: serpyco_rs-1.1.1.tar.gz
- Upload date:
- Size: 60.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/1.3.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6b7a9ac165cbdd84be1c653d13b7df1328f415e231de29829bf9587ac7e42582 |
|
MD5 | 814c979d4351daa59d4112773196ee4b |
|
BLAKE2b-256 | b2c42f19da8563965157424f7224f152fd25413b2a0eef51a966586243691014 |
File details
Details for the file serpyco_rs-1.1.1-cp312-none-win_amd64.whl
.
File metadata
- Download URL: serpyco_rs-1.1.1-cp312-none-win_amd64.whl
- Upload date:
- Size: 309.3 kB
- Tags: CPython 3.12, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/1.3.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1f2008e53593e19f0026071a8eb9b7750f6413bca656db096eda6be91f8ad095 |
|
MD5 | d7b4e3725b783c74bfc0e21a37581f25 |
|
BLAKE2b-256 | 38e335dfce57053e730600519a90868fef36458549f79a286a80aba234a5a03b |
File details
Details for the file serpyco_rs-1.1.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: serpyco_rs-1.1.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 857.7 kB
- Tags: CPython 3.12, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/1.3.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1a9a62c7d4a15701edb537adbd842768b51ba80220e5bda61d0f3c5b08bdb442 |
|
MD5 | 0c5ad8839a031a810baf04551e1a8a7e |
|
BLAKE2b-256 | 1c7b47951cf31bc9d7a3f7470e21fca0cff730f1fe4b769592bb2d0105310187 |
File details
Details for the file serpyco_rs-1.1.1-cp312-cp312-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl
.
File metadata
- Download URL: serpyco_rs-1.1.1-cp312-cp312-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl
- Upload date:
- Size: 891.6 kB
- Tags: CPython 3.12, macOS 10.9+ universal2 (ARM64, x86-64), macOS 10.9+ x86-64, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/1.3.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ec52b6508416ae648e6d2eea6b15bb096ed62d93dd8222af4df98b0b921ce46b |
|
MD5 | d7bcea4e725a4de233972c69868e6e66 |
|
BLAKE2b-256 | 5e4ef3c7540e9a220848fa0cc2a6effbaee41c1ef59c9b195f27033a0856909d |
File details
Details for the file serpyco_rs-1.1.1-cp311-none-win_amd64.whl
.
File metadata
- Download URL: serpyco_rs-1.1.1-cp311-none-win_amd64.whl
- Upload date:
- Size: 305.4 kB
- Tags: CPython 3.11, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/1.3.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8999674d2eda55f161576d5d280862c06d3a221702d47e5ae0b42b32a655662d |
|
MD5 | e5391f9860dbcfa8cdffc403e0628b0e |
|
BLAKE2b-256 | f0817094c026105518cd79651280f611ed8acfef3939a0361fb2de6c4d6ada81 |
File details
Details for the file serpyco_rs-1.1.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: serpyco_rs-1.1.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 861.0 kB
- Tags: CPython 3.11, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/1.3.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 934aa444dfeb8bf882195413dd75bf606beb6e774f8c251b08fc7393ca4b932a |
|
MD5 | 6106a397271e9cf30a06879a32a0664f |
|
BLAKE2b-256 | 41ebd97628b700dc269ffe0d91bf5808c6e62f00c04f519f955d98ffbaffaf42 |
File details
Details for the file serpyco_rs-1.1.1-cp311-cp311-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl
.
File metadata
- Download URL: serpyco_rs-1.1.1-cp311-cp311-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl
- Upload date:
- Size: 901.8 kB
- Tags: CPython 3.11, macOS 10.9+ universal2 (ARM64, x86-64), macOS 10.9+ x86-64, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/1.3.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ff49f32de1e2face53900dcc693c44d28fe170426fca2f1b49ab0b1d7186cfe8 |
|
MD5 | 1d75a085facfc9f0020c64e6ab8822d6 |
|
BLAKE2b-256 | be19daca50366507d32f51c098bc7c5c2fcceeed862e846b4aeb20c43c27db10 |
File details
Details for the file serpyco_rs-1.1.1-cp310-none-win_amd64.whl
.
File metadata
- Download URL: serpyco_rs-1.1.1-cp310-none-win_amd64.whl
- Upload date:
- Size: 305.4 kB
- Tags: CPython 3.10, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/1.3.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f95b6afe2ac93ca13c5919b3c406d1b3518953811999deeb2031366dce8bc050 |
|
MD5 | 73e2ae165863b82ff130fe717df7a968 |
|
BLAKE2b-256 | 5363fb4b621d553fa5ba7daffa8a716813aadc71e4ad6ef20a86ab2c0e81a5f0 |
File details
Details for the file serpyco_rs-1.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: serpyco_rs-1.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 861.0 kB
- Tags: CPython 3.10, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/1.3.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 31d2d7789929853ff05f0abc2be49549ba89316405739f2814ce0003cee83642 |
|
MD5 | 0c08f990e24ed4d89286cf2d3f5b610a |
|
BLAKE2b-256 | d1d2a92b995eb0f94af94b9e0c5db11cca606e992876d925ea70fdef55d13c7d |
File details
Details for the file serpyco_rs-1.1.1-cp310-cp310-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl
.
File metadata
- Download URL: serpyco_rs-1.1.1-cp310-cp310-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl
- Upload date:
- Size: 901.8 kB
- Tags: CPython 3.10, macOS 10.9+ universal2 (ARM64, x86-64), macOS 10.9+ x86-64, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/1.3.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 25ca9cd0fdba762ea70af0fb20869c11b8eb53fb059df1efbae531ea2926b427 |
|
MD5 | 37ed7e9babc5c29738b8fe019a54f30d |
|
BLAKE2b-256 | 4f315831f6e0ecf72e28aef962c37fd7f7aa82ba270bb48eba634be807b2b5a0 |
File details
Details for the file serpyco_rs-1.1.1-cp39-none-win_amd64.whl
.
File metadata
- Download URL: serpyco_rs-1.1.1-cp39-none-win_amd64.whl
- Upload date:
- Size: 304.9 kB
- Tags: CPython 3.9, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/1.3.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 30625ba99b365a3b627e827d56c55879fc8133c7e6b1c5c337baeaef6cf32f7e |
|
MD5 | 7f14c7fd3dfaf6e5858438f13e376e55 |
|
BLAKE2b-256 | ee1c54aaecd84ead6f4a13e8780768bf84a7122d7429873c1e87de548838a69a |
File details
Details for the file serpyco_rs-1.1.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: serpyco_rs-1.1.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 860.9 kB
- Tags: CPython 3.9, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/1.3.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | fb00e72d0e1645e8aff871304581ced8be75653960bad38b1d1e605b5e625af7 |
|
MD5 | ad338c0968c5f81cae54eb5b1c3570de |
|
BLAKE2b-256 | 44d40b006b20f470499a3b1922ddd4bd7dbebf484a7d2274c29e7ea8359b92f9 |
File details
Details for the file serpyco_rs-1.1.1-cp39-cp39-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl
.
File metadata
- Download URL: serpyco_rs-1.1.1-cp39-cp39-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl
- Upload date:
- Size: 901.2 kB
- Tags: CPython 3.9, macOS 10.9+ universal2 (ARM64, x86-64), macOS 10.9+ x86-64, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/1.3.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 73c96bdb8435d5bdd510b6be8b7c941c15b076736d2bca9419f1009dd047d07e |
|
MD5 | fc3487a512cdef22ba045baee8106493 |
|
BLAKE2b-256 | 9ba100913d0fb93288929496dd0ff707699d0e3b9e3e6dfed0724cf78d8c0c61 |