Skip to main content

No project description provided

Project description

sllm-store

About

sllm-store is an internal library of ServerlessLLM that provides high-performance model loading from local storage into GPU memory. You can also install and use this library in your own projects, following our quick start guide.

Install with pip

pip install -i https://test.pypi.org/simple/ --extra-index-url https://pypi.org/simple/ sllm_store==0.0.1.dev5

Install from source

  1. Clone the repository and enter the store directory
git clone git@github.com:ServerlessLLM/ServerlessLLM.git
cd ServerlessLLM/sllm_store
  1. Install the package from source
pip install .

Build the wheel from source

To build sllm-store from source, we suggest you using the docker and build it in NVIDIA container.

  1. Clone the repository and enter the store directory:
git clone git@github.com:ServerlessLLM/ServerlessLLM.git
cd ServerlessLLM/sllm_store
  1. Build the Docker image from Dockerfile.builder
docker build -t sllm_store_builder -f Dockerfile.builder .
  1. Build the package inside the NVIDIA docker container
docker run -it --rm -v $(pwd)/dist:/app/dist sllm_store_builder /bin/bash
export PYTHON_VERSION=310
export TORCH_CUDA_ARCH_LIST="8.0 8.6 8.9 9.0"
conda activate py${PYTHON_VERSION} && python setup.py sdist bdist_wheel
  1. Install the package in local environment
pip install dist/*.whl
  1. Following the quick start guide to use the library.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

serverless-llm-store-0.5.1.tar.gz (44.1 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file serverless-llm-store-0.5.1.tar.gz.

File metadata

  • Download URL: serverless-llm-store-0.5.1.tar.gz
  • Upload date:
  • Size: 44.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.7

File hashes

Hashes for serverless-llm-store-0.5.1.tar.gz
Algorithm Hash digest
SHA256 82a7ba7d17abeb62781015f7e899a1e163b9da079ee4779aa99dab2f9bbe62eb
MD5 f09969836f7ede694aa42e0452ce7272
BLAKE2b-256 6a48ea8dff73a370e429b606fc8c6b555844c8cb1d48940db1f9d6bc907f3734

See more details on using hashes here.

File details

Details for the file serverless_llm_store-0.5.1-cp310-cp310-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for serverless_llm_store-0.5.1-cp310-cp310-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 3e4ac3cc50a0e87d86078cd84ef8e50e9377e532c9d217c148e61afb225e835f
MD5 2bac95de03096977172f4b174cdaed56
BLAKE2b-256 dc33e2f874466f7d3234a4d33c19c6b2c10ab2902efab0d99de492f811aafb1b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page