Skip to main content

Some utilities for tensorflow serving

Project description

serving-utils

Build Status PyPI version

Some python utilities when using tensorflow-serving.

Installation

From PYPI: 1. Manually install tensorflow CPU or GPU version. 2. pip install serving-utils

From Github repository: 1. git clone git@github.com:Yoctol/serving-utils.git 2. make install

Usage

  1. Saver ```python import tensorflow as tf

from serving_utils import Saver

saver = Saver( session=tf.Session(graph=your_graph), output_dir=’/path/to/serving’, signature_def_map={ ‘predict’: tf.saved_model.signature_def_utils.predict_signature_def( inputs={‘input’: tf.Tensor…}, outputs={‘output’: tf.Tensor…}, ) }, ) saver.save(…) ```

  1. Saver ```python from serving_utils import Client, PredictInput

client = Client(addr=”localhost:8500”) client.predict( [PredictInput(name=’input’, value=np.ones(1, 10))], output_names=[‘output’], model_signature_name=’predict’, )

or async

await client.async_predict(…)

## Test

Run the following commands:

make lint make test

## Dev

make install ```

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

serving-utils-0.5.2.tar.gz (10.8 kB view hashes)

Uploaded Source

Built Distribution

serving_utils-0.5.2-py3-none-any.whl (17.5 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page