Skip to main content

Anomaly detection algorithm implemented at Twitter

Project description

Anomaly Detection: Seasonal ESD

Note: All credit goes to Jordan Hochenbaum, Owen S. Vallis and Arun Kejariwa at Twitter, Inc. Any errors in the code are, of course, my mistake. Feel free to fix them.

Intro

Seasonal ESD is an anomaly detection algorithm implemented at Twitter https://arxiv.org/pdf/1704.07706.pdf. What better definition than the one they use in their paper:

"we developed two novel statistical techniques for automatically detecting anomalies in cloud infrastructure data. Specifically, the techniques employ statistical learning to detect anomalies in both application, and system metrics. Seasonal decomposition is employed to filter the trend and seasonal components of the time series, followed by the use of robust statistical metrics – median and median absolute deviation (MAD) – to accurately detect anomalies, even in the presence of seasonal spikes."

Explanation

The algorithm uses the Extreme Studentized Deviate test to calculate the anomalies. In fact, the novelty doesn't come in the fact that ESD is used, but rather on what it is tested.

The problem with the ESD test on its own is that it assumes a normal data distribution, while real world data can have a multimodal distribution. To circumvent this, STL decomposition is used. Any time series can be decomposed with STL decomposition into a seasonal, trend, and residual component. The key is that the residual has a unimodal distribution that ESD can test.

However, there is still the problem that extreme, spurious anomalies can corrupt the residual component. To fix it, the paper proposes to use the median to represent the "stable" trend, instead of the trend found by means of STL decomposition.

Finally, for data sets that have a high percentage of anomalies, the research papers proposes to use the Median Absolute Deviate (MAD) instead of the median when computing the residual. Using MAD enables a more consistent measure of central tendency of a time series with a high percentage of anomalies.


Usage

import numpy as np
import seasonal_esd as sesd
ts = np.random.random(100)
# Introduce artificial anomalies
ts[14] = 9
ts[83] = 10
outliers_indices = sesd.seasonal_esd(ts, hybrid=True, max_anomalies=2)
for idx in outliers_indices:
	print "Anomaly index: {0}, anomaly value: {1}".format(idx, ts[idx])

>>> Anomaly index: 83, anomaly value: 10.0
>>> Anomaly index: 14, anomaly value: 9.0

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sesd-0.1.4.tar.gz (3.7 kB view hashes)

Uploaded Source

Built Distribution

sesd-0.1.4-py3-none-any.whl (16.2 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page