Skip to main content

Set-valued predictors in Python

Project description

Uncertainty-aware classification with set-valued predictions build pypi version license

Package for set-valued prediction in flat and hierarchical classification.

Description

This package provides different set-valued predictors for flat and hierarchical classification with support for Scikit-learn and PyTorch.

TODO: support for multi-label classification.

Installation

Clone this repository tfmortie/setvaluedprediction and run pip install . -r requirements.txt or install by means of pip install setvaluedprediction.

Examples

For multi-class classification, we provide the following set-valued predictors:

  • SVPClassifier: follows the Scikit-learn API
  • SVPNet: follows the PyTorch API

Some minimal examples are given below.

SVPClassifier

We start by importing some packages that we will need throughout the example:

from sklearn.linear_model import SGDClassifier
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_digits

Creating a flat and hierarchical set-valued predictor in Scikit-learn is as simple as:

from svp.multiclass import SVPClassifier

est = SGDClassifier(loss="log_loss") # classifier used for flat and hierarchical model

# create two set-valued predictors
flat = SVPClassifier(est, hierarchy="none")
hier_r = SVPClassifier(est, hierarchy="random")

With argument hierarchy="random", we specify that no predefined hierarchical labels are going to be provided. In this case, SVPClassifier automatically constructs a random hierarchy. The min and max degree of each node in the randomly generated tree can be controlled by means of the argument k:

# predictor with randomly generated binary tree as hierarchy
hier_r = SVPClassifier(est, hierarchy="random", k=(2,2), random_state=2022)

Next, we load a non-hierarchical dataset provided from Scikit-learn and split in a training and validation set:

# our dataset
X, y = load_digits(return_X_y=True)
X_tr, X_te, y_tr, y_te = train_test_split(X, y, test_size=0.5, random_state=2022, stratify=y)

SVPClassifier follows the Scikit-learn API, with support for standard training and inference procedures:

# training the models
flat.fit(X_tr, y_tr)
hier_r.fit(X_tr, y_tr)

# obtain predictions and class probabilities
flat_preds = flat.predict(X_te)
hier_r_preds = hier_r.predict(X_te)
flat_probs = flat.predict_proba(X_te)
hier_r_probs = hier_r.predict_proba(X_te)

Hence, SVPClassifier boils down to a standard Scikit-learn estimator, albeit with additional support for set-valued predictions:

# initialize the set-valued predictor settings
params_flat = {
    "c": 10, # our representation complexity
    "svptype": "errorctrl", # minimize set size, while controlling the error rate
    "error": 0.01 # upper bound the error rate by 1%
}
params_hier_r = {
    "c": 1, # our representation complexity -> in this case only internal nodes are allowed
    "svptype": "errorctrl", # minimize set size, while controlling the error rate
    "error": 0.01 # upper bound the error rate by 1%
}

# obtain set-valued predictions
svp_preds_flat = flat.predict_set(X_te, params_flat)
svp_preds_hier_r = hier_r.predict_set(X_te, params_hier_r)

For more information related to the different set-valued prediction settings, see references below.

SVPNet

Creating a set-valued predictor in PyTorch is very similar to SVPClassifier:

import torch
import torch.nn as nn
from torch.utils.data import TensorDataset, DataLoader
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_digits

from svp.multiclass import SVPNet

# first load data and get training and validation sets
X, y = load_digits(return_X_y=True)
X_tr, X_te, y_tr, y_te = train_test_split(X, y, test_size=0.5, random_state=2021, stratify=y)
tensor_x_tr, tensor_y_tr = torch.Tensor(X_tr), torch.Tensor(y_tr)
tensor_x_te, tensor_y_te = torch.Tensor(X_te), torch.Tensor(y_te)
dataset = TensorDataset(tensor_x_tr, tensor_y_tr) 
dataloader = DataLoader(dataset) # create your dataloader 

# create feature extractor for SGDNet and construct the set-valued predictors
phi = nn.Identity()
flat = SVPNet(phi=phi, hidden_size=X.shape[1], classes=y, hierarchy="none")
hier_r = SVPNet(phi=phi, hidden_size=X.shape[1], classes=y, hierarchy="random")

# start fitting models
if torch.cuda.is_available():
    flat = flat.cuda()
    hier_r = hier_r.cuda()
optim_f = torch.optim.SGD(flat.parameters(), lr=0.01)
optim_hr = torch.optim.SGD(hier_r.parameters(), lr=0.01)
for _ in range(50):
    for _, data in enumerate(dataloader, 1):
        inputs, labels = data
        if torch.cuda.is_available():
            inputs = inputs.cuda()
        optim_f.zero_grad()
        optim_hr.zero_grad()
        loss_f, loss_hr = flat(inputs, labels), hier_r(inputs, labels)
        loss_f.backward()
        loss_hr.backward()

# obtain top-1 predictions
if torch.cuda.is_available():
    tensor_x_te = tensor_x_te.cuda()
flat.eval()
hier_r.eval()
preds_f = flat.predict(tensor_x_te)
preds_hr = hier_r.predict(tensor_x_te)

# obtain set-valued predictions with error rate control and maximal representation complexity
params = {
    "c": 10,
    "svptype": "sizectrl",
    "error": 0.01
}
svp_preds_f = flat.predict_set(tensor_x_te, params)
svp_preds_hr = hier_r.predict_set(tensor_x_te, params)

Hierarchical models with predefined hierarchies

In case you want to work with predefined hierarchies, simply set argument hierarchy="predefined" and make sure that provided labels are encoded in the following way:

# example of two hierarchical labels from a predefined hierarchy
y = ["root;Family1;Genus1;Species1", "root;Family1;Genus1;Species2"]

Moreover, labels must be encoded as strings and should correspond to paths in the predefined hierarchy with nodes separated by ;.

Experiments paper(s)

  • Accompanying code for paper Set-valued prediction in hierarchical classification with constrained representation complexity can be found in the folder src/test/svphc.

Citing

If you use setvaluedprediction in your work, please use the following citation:

@InProceedings{Mortier22SVPHCCRC,
    title = {Set-valued prediction in hierarchical classification with constrained representation complexity},
    author = {Mortier, Thomas and H\"ullermeier, Eyke and Dembczy\'nski, Krzysztof and Waegeman, Willem},
    booktitle = {Proceedings of the Thirty-Eight Conference on Uncertainty in Artificial Intelligence},
    year = {2022},
    series = {Proceedings of Machine Learning Research},
    publisher = {PMLR}
}

If you need more information, feel free to contact me by thomas(dot)mortier92(at)gmail(dot)com.

References

  • Efficient set-valued prediction in multi-class classification, Mortier et al., Data Mining and Knowledge Discovery (2021)

  • Set-valued classification - overview via a unified framework, Chezhen et al., CoRR abs/2102.12318 (2021)

  • Set-valued prediction in hierarchical classification with constrained representation complexity, Mortier et al., Proceedings of Machine Learning Research (2022)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

setvaluedprediction-0.0.3.tar.gz (29.0 kB view details)

Uploaded Source

File details

Details for the file setvaluedprediction-0.0.3.tar.gz.

File metadata

  • Download URL: setvaluedprediction-0.0.3.tar.gz
  • Upload date:
  • Size: 29.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.5

File hashes

Hashes for setvaluedprediction-0.0.3.tar.gz
Algorithm Hash digest
SHA256 24f7cfd9407a1b983da5c9a53f6fd8cb6c06470af65545bd53f4fc14da3f80e9
MD5 18068e2afec36bb9ab67bc3cef9da96c
BLAKE2b-256 b23af43b6b4c37d2c8eba3e96a65bf0ace2af897e6bd602398af064974b55faf

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page