Separate images automatically
Project description
sfmp (separate for me please)
Sfmp is a tool to quickly separate images using clustering based on features extracted through a convolutional neural network. It's really lightweight, using only a mobilenetv2 for feature extraction and kmeans for clustering.
Installation
To install sfmp, follow there steps:
For cpu
pip install "sfmp[cpu]"
For cuda 11.X
pip install "sfmp[gpu]"
For cuda 12.X
pip install "sfmp[gpu]" --extra-index-url https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/onnxruntime-cuda-12/pypi/simple/
Usage
Command Line Interface
You can use sfmp from the command line by providing a list of globs:
sfmp ../examples/*.jpg ../examples2/*.jpg
If you want to use CUDA:
sfmp ../examples/*.jpg ../examples2/*.jpg --provider CUDAExecutionProvider
Check all execution providers here.
To specify the number of clusters:
sfmp ../examples/*.jpg ../examples2/*.jpg --n_clusters 2
or output dir
To specify the number of clusters:
sfmp ../examples/*.jpg ../examples2/*.jpg --output_path result
Example
Before
.
├── cat.1.jpg
├── cat.2.jpg
├── dog.3061.jpg
└── dog.3062.jpg
sfmp ../examples/*.jpg --n_clusters 2
After
├── cluster_0000
│ ├── dog.3061.jpg
│ └── dog.3062.jpg
└── cluster_0001
├── cat.1.jpg
└── cat.2.jpg
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
No source distribution files available for this release.See tutorial on generating distribution archives.
Built Distribution
sfmp-1.0.1-py3-none-any.whl
(4.1 MB
view details)
File details
Details for the file sfmp-1.0.1-py3-none-any.whl
.
File metadata
- Download URL: sfmp-1.0.1-py3-none-any.whl
- Upload date:
- Size: 4.1 MB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.16
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 922e9901ec3b06f238511d2342cc299ac7f92b9c840efdac1adfc5ae85b2b0b7 |
|
MD5 | dd3860e6f34125c51bd70ca45923d0f3 |
|
BLAKE2b-256 | 767ec9f8129931c2f015549f8f016cf78170dc5d92d16ff7a99972cabde83a50 |