Skip to main content

Solar Geometry 2 library

Project description

Solar Geometry 2 (SG2) is the second generation of library for computing the relative position of the sun and the earth. Valid over the time period 1980-2100, the algorithm is 20 times faster than the well-know SPA algorithm, with an accuracy order of approx. 0.005°. Reference article: Blanc P. and L. Wald, The SG2 algorithm for a fast and accurate computation of the position of the sun for multi-decadal time period. Solar Energy 88, 3072-3083, 2012, doi: 10.1016/j.solener.2012.07.018.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

sg2-2.3.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

sg2-2.3.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

sg2-2.3.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

sg2-2.3.1-cp311-cp311-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.11 Windows x86-64

sg2-2.3.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

sg2-2.3.1-cp310-cp310-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.10 Windows x86-64

sg2-2.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

sg2-2.3.1-cp39-cp39-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

sg2-2.3.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

sg2-2.3.1-cp38-cp38-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

sg2-2.3.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

sg2-2.3.1-cp37-cp37m-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.7m Windows x86-64

sg2-2.3.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

sg2-2.3.1-cp36-cp36m-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.6m Windows x86-64

sg2-2.3.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

File details

Details for the file sg2-2.3.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sg2-2.3.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 87bc85de2e59cc7c83e3c222636c3e059a23de60e4dfdf67315816fd39ad160d
MD5 0dae704024d4d2cdc22ddaa7c2eec980
BLAKE2b-256 c4cddffe84539431ede6722071601c8eb667f0aa3cb3aa713f9854977286b18c

See more details on using hashes here.

File details

Details for the file sg2-2.3.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sg2-2.3.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0266fbe422be3795487d4e7b0c577baac908ebdb265b56ef07af986883900695
MD5 bf817b311368aec6fe8063576ff393ab
BLAKE2b-256 2411539e6898d0d1effeb68a827bd8289552a98abd30a06b93a9690bc089775d

See more details on using hashes here.

File details

Details for the file sg2-2.3.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sg2-2.3.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 55c9e4057dce4b8292ab75ccc0abec77a7861129754bd97ff09d71594fa04e08
MD5 f88c84ca32d6ff81ca718f40c63c3104
BLAKE2b-256 f028790df739655461b07059e94ec009d9b21fe45290bce6d3cc69aea9ae4b31

See more details on using hashes here.

File details

Details for the file sg2-2.3.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: sg2-2.3.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.2

File hashes

Hashes for sg2-2.3.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 7c0625c23ec9591450da4186b4102bc0197b8eb7a12c2a161c35acf694deb039
MD5 38ebc0f5d9f8d09c952320a160dc2158
BLAKE2b-256 f67726ad4129b9da2153f3ee8a71da732835639f277569c4f42e90cd57cf35ab

See more details on using hashes here.

File details

Details for the file sg2-2.3.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sg2-2.3.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 910ac0eea46fb622a850bff4d48a3b24e817b5811159d3fd7f8b104188d908ed
MD5 9dec953fb3256fc1a7737472fe9413f5
BLAKE2b-256 abddda5fd28f8d1c5b62ac3426e07d3f3e521304d033f46e3c6f09e71e242cdf

See more details on using hashes here.

File details

Details for the file sg2-2.3.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: sg2-2.3.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.6

File hashes

Hashes for sg2-2.3.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 10f89e7ec9437b7bf567f2a4ccdb34f2f19d764f4778c817a93cf54e301a82ab
MD5 eabb7a57217d124861ca28c90fc6b5ed
BLAKE2b-256 100fe8a0c928a484a6470d55813cf2b69084aa4f962d6520ad240fa47b08ac7f

See more details on using hashes here.

File details

Details for the file sg2-2.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sg2-2.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2d1db26c5cb9975ccb729061f0c8d6eb73f038cc9e8f022e50b5a2413d4b5813
MD5 8ea852e4405c3f9e6a6159146f3f7d17
BLAKE2b-256 b3ad10f146ad792354ebdaa418bfcb0879a9d30b9ce239df14f6f7f24a76fbd7

See more details on using hashes here.

File details

Details for the file sg2-2.3.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: sg2-2.3.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.6

File hashes

Hashes for sg2-2.3.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 1a613cb439389f2fdef19e693dfdc2f858a448fa59ce17ec48294d4a4205ba53
MD5 71b366534ffcefe40572ef3b8a0ad6ab
BLAKE2b-256 7357cfd3d688faba5ab8fd17cc3581b4a043c089512c4d277d2d89f86447bcde

See more details on using hashes here.

File details

Details for the file sg2-2.3.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sg2-2.3.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 89ddaac9ead8231c0ea3cb374ab1a600d5ebf7f57279acba5567fbc890ba9f8d
MD5 0a8a0ab740bc241be59c09984385b39f
BLAKE2b-256 65ee2f23c25a0486437eea2ffdc7ba71f6b768522a705225bf4bcf6f8abb6798

See more details on using hashes here.

File details

Details for the file sg2-2.3.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: sg2-2.3.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.6

File hashes

Hashes for sg2-2.3.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 b362defd5a46373cb3a3fbe1174d66ff5aa50f46b8d4277b2763855aecea28a6
MD5 28dad24984f5b29f6d9b5ce659195dfd
BLAKE2b-256 976b39191454f2893bada345cdd9b6476b30ca7cde49d75742d6ced076b8f035

See more details on using hashes here.

File details

Details for the file sg2-2.3.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sg2-2.3.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f650b7602d4eed807a9e8f95f371ad5e587a12c6d4f3d6e232f78c5808bd99cc
MD5 63920813a738df4d486b9267d4355119
BLAKE2b-256 06cfb1e41ff744abea93ca5b4ca081b869699dd718bc141ae131bd4b8e0b71c1

See more details on using hashes here.

File details

Details for the file sg2-2.3.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: sg2-2.3.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.6

File hashes

Hashes for sg2-2.3.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 241d0a03b2a1fdeed43d9e694b40ac901d695ccd95a3278e6588cd816e88572c
MD5 96007606a3a6076a28e14a48aff4c3cd
BLAKE2b-256 eddf7739570214844d0c67bdd8f6dee006b20e18d77ff41ee7edd71c2b005a4f

See more details on using hashes here.

File details

Details for the file sg2-2.3.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sg2-2.3.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 533f73390304068acbd609e6235727f78c1efcf126315aa2ded2f1ef9a622e22
MD5 2f746a414a3964c69e1d705b40a6df51
BLAKE2b-256 bde0f735581c26e05407af051e1219b6da0d6aa87f33012bceae6dc32f37b5ef

See more details on using hashes here.

File details

Details for the file sg2-2.3.1-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: sg2-2.3.1-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.6

File hashes

Hashes for sg2-2.3.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 74a4a1a60d6f5752b4e992129872d2dbf935d9dc230e1ecbb628394e7dc23bc7
MD5 b6e9baecfa08dae1136524ca3607cf77
BLAKE2b-256 def808e9590ee0792e108941abdf8029ab2f8f2f5d124879647e8d95e628b88d

See more details on using hashes here.

File details

Details for the file sg2-2.3.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sg2-2.3.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b3f491fc7603ac4239a9f23653c67f7c322fa75723a78082da4344ef4f012228
MD5 3f9543657e063464152b3d223ab60f98
BLAKE2b-256 2907025e4a5bb6f7e376e51a6653368f7abda8bbc83a7ffe988564f0feaa2d1e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page