Python implementation of Streaming Gaussian Dirichlet Random Fields (San Soucie et al. 2023)
Project description
Sgdrf
Python implementation of Streaming Gaussian Dirichlet Random Fields (San Soucie et al. 2023).
See the docs 📚 for more info.
Licensed under the terms of the MIT License. New issues and pull requests are welcome. Please refer to the contributing guide and security policy. Generated with Tyrannosaurus.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
sgdrf-0.2.1.tar.gz
(13.9 kB
view details)
Built Distribution
sgdrf-0.2.1-py3-none-any.whl
(9.9 kB
view details)
File details
Details for the file sgdrf-0.2.1.tar.gz
.
File metadata
- Download URL: sgdrf-0.2.1.tar.gz
- Upload date:
- Size: 13.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/4.0.2 CPython/3.11.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0bcd0054111f102216e693bd7221738616ba67864409eb4ed7d2d367f581a6e2 |
|
MD5 | 82150ac6cad5fe362ffa976d1d052455 |
|
BLAKE2b-256 | f6f71d56625d07f9a0a4e2c465bdf923108e6707e6bc57c3242901498cdfc6e8 |
File details
Details for the file sgdrf-0.2.1-py3-none-any.whl
.
File metadata
- Download URL: sgdrf-0.2.1-py3-none-any.whl
- Upload date:
- Size: 9.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/4.0.2 CPython/3.11.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 67a5337d02cbb68f581ca6d5091b9995d52710509842639f02be4a85010d622b |
|
MD5 | 95bf301bb7396f174c4825b3f9a37f9e |
|
BLAKE2b-256 | 17845aa41343982f5819c96220f7e537d79166f4b9d74dea3f5da73a0944c344 |