A Python module for generative 2d image creation
Project description
Sh🕶️des
About
Shades is a python module for generative 2d image creation.
Latest version is available via pip install
Full reference documentation is available here! 🥳
It might be helpful to read the below guide first as an intro.
Handy Guide
The shades module is based around a few key objects:
- Canvas (basically just a PIL image, with a couple of additions)
- Shade (determine color based on rules, have methods to draw on canvas)
- NoiseField (calculates Perlin noise based on xy coords)
Canvas
The Canvas object is just a wrapper for a PIL image object (with some minor functionalities added in like Canvas.random_point() and Canvas.center). The idea is that you don't have to import two libraries all the time, but if you'd prefer, you can switch out the Canvas call for a PIL image one. This is useful to know as well if you'd like to work between the two modules, or import images/photos to draw on or use with Shades.
Here's a simple example using just the Canvas object:
import shades
canvas = shades.Canvas(width=100, height=100, color=(200, 0, 0))
canvas.save('exciting_red_square.png')
canvas.show()
This script will save, and bring up the following image:
Not too exciting, right? We created a monotone red image that is 100 by 100 pixels. Color is worth taking note, as throughout Shades colors are treated and expected to be tuples of the Red, Green and Blue color values (on a scale of 0 to 255). So (200, 0, 0) gives us a red tone.
There's not much else you can do with Canvas, the idea is just to give us an image on which we can draw stuff.
NoiseField
NoiseField is a pretty handy concept here. A lot of the time with images, we might want an element of randomness, but with a gentler transition. NoiseField is the answer to this, as it gives us random gradients between numbers. There's more resources online about Perlin noise itself if you're interested- t's a really cool topic
Here's an example of a simple NoiseField use:
import shades
noise_field = shades.NoiseField(scale=0.002, seed=8)
random_number = noise_field.noise((24, 100))
In this, random_number is the return of the 'noise' call, which takes in coordinates (in the form of an (x, y) tuple) and spits out a float between 0 and 1. The important thing about NoiseField vs purely random number generation, is that if we get the return of a nearby point, say (25, 101), then the float between 0 and 1 will be close to our first call. The further away from the point we get, the further away the noise value is likely to be.
When creating a NoiseField, the two arguments we can put in are scale (which affected how quickly generated numbers will change between points, and 'seed' which is used for generating the semi-random numbers)
Shades uses numpy to calculate perlin noise, and tries to strike a balance between frontloading noise-fields (so they can be batch calculated with vectorisation) and calculating as it goes (so that you're not waiting ages for something that'll never be used).
One quality of life feature that's worth mentioning is the noise_fields function that works as follows:
import shades
noise_fields = shades.noise_fields(seed=[4, 4, 9], scale=[0.04, 0.2, 0.002], channels=3)
more_fields = shades.noise_fields(scale=0.002, channels=2)
This doesn't introduce new functionality, but in a lot of cases (like with working with color, or x/y coordinates) you'll want multiple noise fields (and might want to specify seeds or scales, or leave them blank for defaults), so this is a handy way of doing that without lots of repetitive calls.
Shade
The Shade object as you'd guess in a module called Shades does pretty much all the work. You can think of them as like code-pencils - they have properties that affect what color stuff will be, and a bunch of methods to let us draw stuff.
Here's a simple example using a BlockColor shade, that'll always produce the same color:
import shades
canvas = shades.Canvas(200, 200)
cyan = shades.BlockColor((0, 255, 255))
cyan.rectangle(canvas, (50, 50), width=100, height=150)
canvas.show()
This script does a few things:
- Creates a Canvas to draw on
- Creates a BlockColor shade to draw with
- Draws a rectangle with the BlockColor object on coordinates (50, 50) of the Canvas
- Displays the canvas
This is what the picture will look like:
A lot of Shade objects use NoiseField, for example, the NoiseGradient object which chooses color based on noise responses to (x,y) coordinates. Which we can see here:
import shades
canvas = shades.Canvas(200, 200)
gradient = shades.NoiseGradient(
color=(200, 200, 200),
color_fields=shades.noise_fields(scale=0.02, channels=3),
)
gradient.circle(
canvas,
canvas.center,
radius=50,
)
canvas.show()
(There are three NoiseField objects taken by the color_fields parameter, one for red, green and blue, using the same NoiseField seed for each would create a gradient that changes how light/dark the color is without affecting the overall tone)
Also, all Shade objects can be called with 'warp_noise' that will use noise to affect the location of points:
import shades
canvas = shades.Canvas(200, 200)
warped_shade = shades.BlockColor(
color=(100, 200, 100),
warp_size=50,
warp_noise=shades.noise_fields(scale=0.01, channels=3)
)
warped_shade.line(canvas,(0, 0), (canvas.width, canvas.height))
canvas.show()
(the line's location is affected by the two NoiseField relating to x and y warping, giving us a wavy green line)
Hacking Shades
One of the goals of the Shade object, is to make something that's easily extensible. You can create your own Shade and already have access to the drawing methods and location warping that are present in the abstract base class of the Shade.
The only requirement of creating a Shade is to include a method determine_shade, taking only (x,y) coordinates as an argument, and returning a color.
Here's an example of creating a shade that returns a completely random shade of grey each time:
import shades
from random import randint
class RandomGrey(shades.Shade):
def determine_shade(self, xy):
mono = randint(0, 255)
return (mono, mono, mono)
canvas = shades.Canvas(300,300)
my_shade = RandomGrey()
my_shade.triangle(canvas, (0, 0), (0, 300), (300, 150))
canvas.show()
Examples
Here's a few examples of some short scripts and the images they create.
Using SwirlOfShades which will choose another shade based on NoiseField returns
import shades
canvas = shades.Canvas()
shade = shades.SwirlOfShades(
swirl_field=shades.NoiseField(scale=0.005),
shades=([
(0.4, 0.6, shades.BlockColor((63, 151, 197)))
]),
)
shade.fill(canvas)
canvas.show()
Drawing a circle using a DomainWarpGradient object
import shades
canvas = shades.Canvas()
shade = shades.DomainWarpGradient(
color=(200,200,200),
color_variance=70,
color_fields=shades.noise_fields(scale=0.01, channels=3),
depth=2,
)
shade.circle(canvas, canvas.center, canvas.width/3)
canvas.show()
Integrating with Scipy's Delaunay function, to make a triangular grid
import shades
from random import randint
from scipy.spatial import Delaunay
canvas = shades.Canvas(1000, 800)
ink = shades.NoiseGradient(
color_fields=[shades.NoiseField(scale=0.002) for i in range(3)]
)
points = [(randint(0, canvas.width), randint(0, canvas.height)) for i in range(90)]
# plus some edge points to make sure the whole canvas is coloured
points.append((0, 0))
points.append((0, canvas.height))
points.append((canvas.width, 0))
points.append((canvas.width, canvas.height))
points.append((0, canvas.height/2))
points.append((canvas.width, canvas.height/2))
points.append((canvas.width/2, 0))
points.append((canvas.width/2, canvas.height))
# drawing triangles between points
for tri in Delaunay(points).simplices:
ink.color = [randint(180, 255) for i in range(3)]
ink.triangle(
canvas,
points[tri[0]],
points[tri[1]],
points[tri[2]],
)
canvas.show()
Happy hacking! 🕶️
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file shades-1.2.tar.gz
.
File metadata
- Download URL: shades-1.2.tar.gz
- Upload date:
- Size: 16.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 43589716a5c34f2e1aa0d262cbc1ada2736136774e1cd81123b44cb8f9e4188b |
|
MD5 | d4cd1a2406f0da417c30cb52d47c8687 |
|
BLAKE2b-256 | ca8c9e7b827dc2fe7619cd882f552297bc8a0358b19ed50b1c5e69ed12b0480f |
File details
Details for the file shades-1.2-py3-none-any.whl
.
File metadata
- Download URL: shades-1.2-py3-none-any.whl
- Upload date:
- Size: 14.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 57d015fe112535be6d0435299663a7725141419b32f8b09cc77f5cb12fdf12d8 |
|
MD5 | 85b7679e536861a74cef021497a92497 |
|
BLAKE2b-256 | 75ce12fb56d5d912a6e9d0dc193edb844bcef14b0a0ea768d3de9b1c60a5c991 |