Skip to main content

Semi-supervised machine learning for PyTorch.

Project description

Shadow

Build Status Coverage Status Documentation Status Downloads

Shadow is a PyTorch based library for semi-supervised machine learning. The shadow python 3 package includes implementations of Virtual Adversarial Training, Mean Teacher, and Exponential Averaging Adversarial Training. Semi-supervised learning enables training a model (gold dashed line) from both labeled (red and blue) and unlabeled (grey) data, and is typically used in contexts in which labels are expensive to obtain but unlabeled examples are plentiful.

SSML for half moons

For more information, go to https://shadow-ssml.readthedocs.io/en/latest/

Installation

Shadow can by installed directly from pypi as:

pip install shadow-ssml

Citing Shadow

  • Linville, L., Anderson, D., Michalenko, J., Galasso, J., & Draelos, T. (2021). Semisupervised Learning for Seismic Monitoring Applications. Seismological Society of America, 92(1), 388-395. doi: https://doi.org/10.1785/0220200195

License

Revised BSD. See the LICENSE.txt file.

Contact

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Copyright

Copyright 2019, National Technology & Engineering Solutions of Sandia, LLC (NTESS). Under the terms of Contract DE-NA0003525 with NTESS, the U.S. Government retains certain rights in this software.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

shadow-ssml-1.0.3.tar.gz (14.5 kB view details)

Uploaded Source

File details

Details for the file shadow-ssml-1.0.3.tar.gz.

File metadata

  • Download URL: shadow-ssml-1.0.3.tar.gz
  • Upload date:
  • Size: 14.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.11

File hashes

Hashes for shadow-ssml-1.0.3.tar.gz
Algorithm Hash digest
SHA256 b877c1652e2d4077b2ad7a1a584db2478d4c463b05a747a0db093b40899ab17f
MD5 ed16528128ce40d0590c372cd8937dcc
BLAKE2b-256 20ba12d18cde7c3f9022dc7afd4349a8a64657fa446126b0e95655a3d70ca753

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page