Skip to main content

An open source library for building end-to-end dialog systems and training chatbots.

Project description

License Apache 2.0 Python 3.6, 3.7, 3.8, 3.9 Downloads

DeepPavlov is an open-source conversational AI library built on PyTorch.

DeepPavlov is designed for

  • development of production ready chat-bots and complex conversational systems,
  • research in the area of NLP and, particularly, of dialog systems.

Quick Links

Please leave us your feedback on how we can improve the DeepPavlov framework.

Models

Named Entity Recognition | Intent/Sentence Classification |

Question Answering over Text (SQuAD) | Knowledge Base Question Answering

Sentence Similarity/Ranking | TF-IDF Ranking

Automatic Spelling Correction | Entity Linking

Russian SuperGLUE

Skills

Open Domain Questions Answering

Frequently Asked Questions Answering

Embeddings

BERT embeddings for the Russian, Polish, Bulgarian, Czech, and informal English

ELMo embeddings for the Russian language

FastText embeddings for the Russian language

Auto ML

Tuning Models

Integrations

REST API | Socket API

Amazon AWS

Installation

  1. We support Linux platform, Python 3.6, 3.7, 3.8 and 3.9

    • Python 3.5 is not supported!
  2. Create and activate a virtual environment:

    • Linux
    python -m venv env
    source ./env/bin/activate
    
  3. Install the package inside the environment:

    pip install deeppavlov
    

QuickStart

There is a bunch of great pre-trained NLP models in DeepPavlov. Each model is determined by its config file.

List of models is available on the doc page in the deeppavlov.configs (Python):

from deeppavlov import configs

When you're decided on the model (+ config file), there are two ways to train, evaluate and infer it:

GPU requirements

To run supported DeepPavlov models on GPU you should have CUDA compatible with used GPU and library PyTorch version.

Command line interface (CLI)

To get predictions from a model interactively through CLI, run

python -m deeppavlov interact <config_path> [-d]
  • -d downloads required data -- pretrained model files and embeddings (optional).

You can train it in the same simple way:

python -m deeppavlov train <config_path> [-d]

Dataset will be downloaded regardless of whether there was -d flag or not.

To train on your own data you need to modify dataset reader path in the train config doc. The data format is specified in the corresponding model doc page.

There are even more actions you can perform with configs:

python -m deeppavlov <action> <config_path> [-d]
  • <action> can be
    • download to download model's data (same as -d),
    • train to train the model on the data specified in the config file,
    • evaluate to calculate metrics on the same dataset,
    • interact to interact via CLI,
    • riseapi to run a REST API server (see doc),
    • predict to get prediction for samples from stdin or from <file_path> if -f <file_path> is specified.
  • <config_path> specifies path (or name) of model's config file
  • -d downloads required data

Python

To get predictions from a model interactively through Python, run

from deeppavlov import build_model

model = build_model(<config_path>, download=True)

# get predictions for 'input_text1', 'input_text2'
model(['input_text1', 'input_text2'])
  • where download=True downloads required data from web -- pretrained model files and embeddings (optional),
  • <config_path> is path to the chosen model's config file (e.g. "deeppavlov/configs/ner/ner_ontonotes_bert_mult.json") or deeppavlov.configs attribute (e.g. deeppavlov.configs.ner.ner_ontonotes_bert_mult without quotation marks).

You can train it in the same simple way:

from deeppavlov import train_model 

model = train_model(<config_path>, download=True)
  • download=True downloads pretrained model, therefore the pretrained model will be, first, loaded and then train (optional).

Dataset will be downloaded regardless of whether there was -d flag or not.

To train on your own data you need to modify dataset reader path in the train config doc. The data format is specified in the corresponding model doc page.

You can also calculate metrics on the dataset specified in your config file:

from deeppavlov import evaluate_model 

model = evaluate_model(<config_path>, download=True)

License

DeepPavlov is Apache 2.0 - licensed.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

shallowpavlov-0.0.2.tar.gz (267.1 kB view details)

Uploaded Source

Built Distribution

shallowpavlov-0.0.2-py3-none-any.whl (460.3 kB view details)

Uploaded Python 3

File details

Details for the file shallowpavlov-0.0.2.tar.gz.

File metadata

  • Download URL: shallowpavlov-0.0.2.tar.gz
  • Upload date:
  • Size: 267.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for shallowpavlov-0.0.2.tar.gz
Algorithm Hash digest
SHA256 ca52a52f25ead8f1b3b9a9b32ac516cf21e284c148805e3eb7bf6ae4bd2ee7a9
MD5 120d99bff842707a7642d37471260c9e
BLAKE2b-256 c970862f429b7a3e8933cdd2bb332840200949a6599c040357366b6d91bb3339

See more details on using hashes here.

File details

Details for the file shallowpavlov-0.0.2-py3-none-any.whl.

File metadata

File hashes

Hashes for shallowpavlov-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 0d733811d8aa2b535758859997d18f1069503f6924d410454560e5f0572674db
MD5 69b43e8c37eefe29131fc7ed96953bf1
BLAKE2b-256 c76801dfa433447ad694863598a6ea4ce97e407e6277ee0fc9e268f8afd43a10

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page