Skip to main content

Interactive dashboard programming framework for the jupyter notebook

Project description


# Shaolin


## Framework for interactive widget-based dashboards programming. Feedback is really appreciated


**Shaolin**(**S**tructure **H**elper for d**A**shb**O**ard **LIN**king) is an ipywidgets based framework that allows to create interactive dashboards that can be linked with each other to build complex applications.

Its still in a alpha alpha version, the beta version will be realeased before 17 july.

Installation: **pip install shaolin**.

## Alpha version disclaimer

This package is a few months old and has only been tested by me. Everything should work with medium size data (Pandas and plotting using the svg backend instead of WebGL). If you plan on using shaolin for business please contact me.

### Dependencies:
- six
- numpy
- pandas
- planarity
- networkx
- bokeh
- seaborn
- vpython
- plotly
- cufflinks




# Main features


The documentation is located in the [examples](https://github.com/HCsoft-RD/shaolin/tree/master/examples) folder.

### ipywidgets based and pydata compatible

This framework is build on top of standard pydata libraries like pandas and numpy and uses only the ipywidgets package for the interface management, although
shaolin provides a simplified interface that extends the ipywidgets capabilities.

### Own syntax for quickly defining new Dashboards

Shaolin has a simplified syntax that allows to program dashboards consisting on multiple widgets more quickly.

- [Syntax for defining widgets](https://github.com/HCsoft-RD/shaolin/blob/master/examples/Shaolin%20syntax.ipynb)
- [Dashboard introduction](https://github.com/HCsoft-RD/shaolin/blob/master/examples/Dashboards.ipynb)

### Link different Dashboard to create complex applications

It is possible to combine multiple dashboards into a new one in order to perform complex tasks like data analysis or plotting.

- [Dashboard programming tutorial](https://github.com/HCsoft-RD/shaolin/blob/master/examples/Creating%20complex%20Dashboards.ipynb)

### Save and share your dashboards easily

You can load and save the state of a dashboard easily with no additional effort.

### No more writing widgets css

Modify any visual property of a dashboard interactively using widgets.


*********************
# Sample Dashboards

Shaolin comes batteries included with Dashboard created for performing various standard data analysis tasks that you can use as a base to build your own applications.

### Colormap creation
Use a colormap picker capable of creating any matplotlib and seaborn colormap or palette.

- [Colormap tutorial](https://github.com/HCsoft-RD/shaolin/blob/master/examples/Shaolin%20Colors.ipynb)

### Full customizable scatter plot

Plot an interactive bokeh scatter plot with tooltips from any pandas DataFrame, Panel or Panel4D. You will be able to modify any visual property of the plot with just a few clicks. I bet you wont need to program another scatter plot after trying this ;)

- [Scatter plot introduction](https://github.com/HCsoft-RD/shaolin/blob/master/examples/Scatter%20Plot%20introduction.ipynb)

### Networkx compatibility
We have dashboards that map the networkx interface to calculate any graph metric, any graph layout and the capability of converting time series correlation matrices into graphs.
You will also be able to plot any graph using the networkx capabilities in a fully customizable bokeh plot.

- [Shaolin GraphCalculator tutorial] (https://github.com/HCsoft-RD/shaolin/blob/master/examples/GraphCalculator.ipynb)
- [Shaolin Bokeh GraphPlot tutorial] (https://github.com/HCsoft-RD/shaolin/blob/master/examples/GraphPlot.ipynb)

### Slicers
Widgets for slicing any pandas structure or numpy array.

###plot mappers
These Dashboards provide everything you need to create new interactive plots with almost no code.

### Plotly compatibility
Define a custom plot layout using widgets and use the cufflinks library with a pandas DataFrame without writing a single line of code.

# Upcoming features

I hope most of there are available in the beta release.

###Walkers

It will extend the capabilities of the GraphCalculator for making interactive animated graphs in real time. This is really usefull for visualizing correlation matrix time series.


Compatibility for mapping data to interactive matplotlib plots using MplD3.



Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

shaolin-0.0.1b1-py3-none-any.whl (72.7 kB view details)

Uploaded Python 3

shaolin-0.0.1b1-py2.py3-none-any.whl (72.6 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file shaolin-0.0.1b1-py3-none-any.whl.

File metadata

File hashes

Hashes for shaolin-0.0.1b1-py3-none-any.whl
Algorithm Hash digest
SHA256 000e7175219c73c56b42ef2435f9c3a1874ae250ece6a270b473507724478998
MD5 d3c2bc76c3f5d40295c8de857b9bf292
BLAKE2b-256 fcd23eb7fece4255e0303319f66dcec41702b1feb233f8fbd283eb1178fe3d80

See more details on using hashes here.

File details

Details for the file shaolin-0.0.1b1-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for shaolin-0.0.1b1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 15d7fb1f36779e2b95a1091ad8a0e067d911f95581e4406e17c04b6c27919cb9
MD5 bac1aa179e73865510b31974debc4b3d
BLAKE2b-256 00ad67d96520e4a8f1361b540c22f790dacaafe721a3c2b6ca26d83bd0b96940

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page