A package to prove the existence of non-intersecting realizations of abstract simplicial complexes with specified edge lengths.
Project description
shape_existence
This is a package to prove the existence of non-intersecting realizations of abstract simplicial complexes with specified edge lengths.
This README should be fleshed out soon, for now here are the test cases from shape_existence.py
.
if __name__ == '__main__':
examples = [4]
if 1 in examples:
#tetrahedron
tetrahedron_asc = AbstractSimplicialComplex(mode = "maximal_simplices", data = [["a", "b", "c", "d"]])
tetrahedron_rsc = tetrahedron_asc.heuristic_embed(dim = 3, desired_sq_lengths = {"default" : 1}, final_round_digits = 5)
tetrahedron_rsc.save_as_obj("tetrahedron.obj", "./obj_files/")
tetrahedron_rsc.prove_existence(desired_sq_lengths = {"default" : Fraction(1)}, verbose = True)
if 2 in examples:
#octahdron
octahedron_asc = AbstractSimplicialComplex(mode = "maximal_simplices",
data = [["t", "1", "2"], ["t", "2", "3"], ["t", "3", "4"], ["t", "4", "1"],
["b", "1", "2"], ["b", "2", "3"], ["b", "3", "4"], ["b", "4", "1"]])
octahedron_rsc = octahedron_asc.heuristic_embed(dim = 3, desired_sq_lengths = {"default" : 1}, final_round_digits = 5)
octahedron_rsc.save_as_obj("octahedron.obj", "./obj_files/")
octahedron_rsc.prove_existence(desired_sq_lengths = {"default" : Fraction(1)}, verbose = True)
if 3 in examples:
#icosahedron
icosahedron_asc = AbstractSimplicialComplex(mode = "maximal_simplices",
data = [["t", "a1", "a2"], ["t", "a2", "a3"], ["t", "a3", "a4"], ["t", "a4", "a5"], ["t", "a5", "a1"],
["a1", "a2", "b1"], ["a2", "a3", "b2"], ["a3", "a4", "b3"], ["a4", "a5", "b4"], ["a5", "a1", "b5"],
["b1", "b2", "a2"], ["b2", "b3", "a3"], ["b3", "b4", "a4"], ["b4", "b5", "a5"], ["b5", "b1", "a1"],
["b", "b1", "b2"], ["b", "b2", "b3"], ["b", "b3", "b4"], ["b", "b4", "b5"], ["b", "b5", "b1"]])
icosahedron_rsc = icosahedron_asc.heuristic_embed(dim = 3, desired_sq_lengths = {"default" : 1}, final_round_digits = 9)
icosahedron_rsc.save_as_obj("icosahedron.obj", "./obj_files/")
icosahedron_rsc.prove_existence(desired_sq_lengths = {"default" : Fraction(1)}, verbose = True)
if 4 in examples:
#existence of a triangle with sides 3, 4, and 5
right_triangle = AbstractSimplicialComplex(mode = "maximal_simplices",
data = [["a", "b"], ["b", "c"], ["c", "a"]])
right_triangle_rsc = right_triangle.heuristic_embed(dim = 2, desired_sq_lengths = {("a", "b") : 9, ("b", "c") : 16, ("c", "a") : 25}, final_round_digits = 8)
right_triangle_rsc.save_as_obj("345_triangle.obj", "./obj_files/")
right_triangle_rsc.prove_existence(desired_sq_lengths = {("a", "b") : 9, ("b", "c") : 16, ("c", "a") : 25}, verbose = True)
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
shape_existence-0.0.5.tar.gz
(18.0 kB
view details)
Built Distribution
File details
Details for the file shape_existence-0.0.5.tar.gz
.
File metadata
- Download URL: shape_existence-0.0.5.tar.gz
- Upload date:
- Size: 18.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f94f21ece05eee05ed7d8c785ec81d54585ccfc002b12659d4f0aecfb5b0893d |
|
MD5 | 03e9acb5d9261267f75c289800bda3b8 |
|
BLAKE2b-256 | a522bf342a8433ccbab90d0c7c36abd7d66d41e5a3204ece16b468a41bccd4f2 |
File details
Details for the file shape_existence-0.0.5-py3-none-any.whl
.
File metadata
- Download URL: shape_existence-0.0.5-py3-none-any.whl
- Upload date:
- Size: 18.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8661a26c0fb0820ab50b1764fb4bc5b515df310ea9cce6a8eb2f3f83b3800fb8 |
|
MD5 | 158913619c7a56d7303d09d08bc6f945 |
|
BLAKE2b-256 | 6dcc8076274e8b34460d9781eca1a9f16ca530124a4f5057154deedda060ad2d |