Skip to main content

Manipulation and analysis of geometric objects

Project description

Documentation Status Travis CI status PyPI Anaconda

Manipulation and analysis of geometric objects in the Cartesian plane.

https://c2.staticflickr.com/6/5560/31301790086_b3472ea4e9_c.jpg

Shapely is a BSD-licensed Python package for manipulation and analysis of planar geometric objects. It is using the widely deployed open-source geometry library GEOS (the engine of PostGIS, and a port of JTS). Shapely wraps GEOS geometries and operations to provide both a feature rich Geometry interface for singular (scalar) geometries and higher-performance NumPy ufuncs for operations using arrays of geometries. Shapely is not primarily focused on data serialization formats or coordinate systems, but can be readily integrated with packages that are.

What is a ufunc?

A universal function (or ufunc for short) is a function that operates on n-dimensional arrays on an element-by-element fashion and supports array broadcasting. The underlying for loops are implemented in C to reduce the overhead of the Python interpreter.

Multithreading

Shapely functions generally support multithreading by releasing the Global Interpreter Lock (GIL) during execution. Normally in Python, the GIL prevents multiple threads from computing at the same time. Shapely functions internally release this constraint so that the heavy lifting done by GEOS can be done in parallel, from a single Python process.

Usage

Here is the canonical example of building an approximately circular patch by buffering a point, using the scalar Geometry interface:

>>> from shapely import Point
>>> patch = Point(0.0, 0.0).buffer(10.0)
>>> patch
<POLYGON ((10 0, 9.952 -0.98, 9.808 -1.951, 9.569 -2.903, 9.239 -3.827, 8.81...>
>>> patch.area
313.6548490545941

Using the vectorized ufunc interface (instead of using a manual for loop), compare an array of points with a polygon:

>>> import shapely
>>> import numpy as np
>>> geoms = np.array([Point(0, 0), Point(1, 1), Point(2, 2)])
>>> polygon = shapely.box(0, 0, 2, 2)

>>> shapely.contains(polygon, geoms)
array([False,  True, False])

See the documentation for more examples and guidance: https://shapely.readthedocs.io

Requirements

Shapely 2.0 requires

  • Python >=3.7

  • GEOS >=3.5

  • NumPy >=1.14

Installing Shapely

We recommend installing Shapely using one of the available built distributions, for example using pip or conda:

$ pip install shapely
# or using conda
$ conda install shapely --channel conda-forge

See the installation documentation for more details and advanced installation instructions.

Integration

Shapely does not read or write data files, but it can serialize and deserialize using several well known formats and protocols. The shapely.wkb and shapely.wkt modules provide dumpers and loaders inspired by Python’s pickle module.

>>> from shapely.wkt import dumps, loads
>>> dumps(loads('POINT (0 0)'))
'POINT (0.0000000000000000 0.0000000000000000)'

Shapely can also integrate with other Python GIS packages using GeoJSON-like dicts.

>>> import json
>>> from shapely.geometry import mapping, shape
>>> s = shape(json.loads('{"type": "Point", "coordinates": [0.0, 0.0]}'))
>>> s
<POINT (0 0)>
>>> print(json.dumps(mapping(s)))
{"type": "Point", "coordinates": [0.0, 0.0]}

Support

Questions about using Shapely may be asked on the GIS StackExchange using the “shapely” tag.

Bugs may be reported at https://github.com/shapely/shapely/issues.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

shapely-2.0a1.tar.gz (261.3 kB view details)

Uploaded Source

Built Distributions

shapely-2.0a1-cp310-cp310-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

shapely-2.0a1-cp310-cp310-win32.whl (1.4 MB view details)

Uploaded CPython 3.10 Windows x86

shapely-2.0a1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

shapely-2.0a1-cp310-cp310-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

shapely-2.0a1-cp310-cp310-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

shapely-2.0a1-cp310-cp310-macosx_10_9_universal2.whl (2.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

shapely-2.0a1-cp39-cp39-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

shapely-2.0a1-cp39-cp39-win32.whl (1.4 MB view details)

Uploaded CPython 3.9 Windows x86

shapely-2.0a1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

shapely-2.0a1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (2.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

shapely-2.0a1-cp39-cp39-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

shapely-2.0a1-cp39-cp39-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

shapely-2.0a1-cp39-cp39-macosx_10_9_universal2.whl (2.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

shapely-2.0a1-cp38-cp38-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

shapely-2.0a1-cp38-cp38-win32.whl (1.4 MB view details)

Uploaded CPython 3.8 Windows x86

shapely-2.0a1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

shapely-2.0a1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (2.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

shapely-2.0a1-cp38-cp38-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

shapely-2.0a1-cp38-cp38-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

shapely-2.0a1-cp38-cp38-macosx_10_9_universal2.whl (2.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

shapely-2.0a1-cp37-cp37m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.7m Windows x86-64

shapely-2.0a1-cp37-cp37m-win32.whl (1.4 MB view details)

Uploaded CPython 3.7m Windows x86

shapely-2.0a1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

shapely-2.0a1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (2.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

shapely-2.0a1-cp37-cp37m-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file shapely-2.0a1.tar.gz.

File metadata

  • Download URL: shapely-2.0a1.tar.gz
  • Upload date:
  • Size: 261.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for shapely-2.0a1.tar.gz
Algorithm Hash digest
SHA256 599a030ff2ba2344a2056c74bea888887c2c7206261babf182c92eb73c646c9b
MD5 e64c489b113f36c57f3d88fbd831dfa9
BLAKE2b-256 482409fa30cb55960e538f120f1c831e4e456c1bae74c86745c5a0d6b22d677e

See more details on using hashes here.

File details

Details for the file shapely-2.0a1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: shapely-2.0a1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for shapely-2.0a1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 c37bc4f2fb60d20120b9dda43749e944edb709de952547335267702c00ddaac9
MD5 661de4b28cd55b935c7b29ce95bc5d51
BLAKE2b-256 a063bc375616c482d12db41d5cef362f073cabcbe8a31c7731d62d86a0bbc86d

See more details on using hashes here.

File details

Details for the file shapely-2.0a1-cp310-cp310-win32.whl.

File metadata

  • Download URL: shapely-2.0a1-cp310-cp310-win32.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for shapely-2.0a1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 704fa966a24c4446948c2550cf2e51e9a9fd5236ccd881d66498d3f7123e9435
MD5 830d6227b9a7ebfa6b0f58b67ed85857
BLAKE2b-256 11abf2e6d73e0dbc89684c8d385aea375d15b0e3fb2fb6dd36057f2e35223168

See more details on using hashes here.

File details

Details for the file shapely-2.0a1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for shapely-2.0a1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 94ed56940f44fc7fbcc30b6670b10f90c8a72f9442ac9c92edce1ddefd28549d
MD5 cf83c127f45fc61a6817f551faeb3b84
BLAKE2b-256 ee7c0bb1f97504965791142bc329626bcd2d1260f6ad735b0774d1620c58d59a

See more details on using hashes here.

File details

Details for the file shapely-2.0a1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for shapely-2.0a1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f225e0f11007cbdda278bb6086069549962e835123cbc2ad350cf67677d554c7
MD5 ad56e7a712945d8e19ee4fe3097523f2
BLAKE2b-256 ac45fa63fc92eb493a8f202b11b19616fab872bc5b80310c2007ac9c284c895e

See more details on using hashes here.

File details

Details for the file shapely-2.0a1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for shapely-2.0a1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e8e3f8c7740e481439feaac3563e1af512caf8846aa944718acc58f96d372cd5
MD5 36b9b18a141e55d42cd410fc234dd137
BLAKE2b-256 1d95030c1dc6570770afa22d58492e641a0a97f0b96188d11ebf6310cd7aa85f

See more details on using hashes here.

File details

Details for the file shapely-2.0a1-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for shapely-2.0a1-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 5b826bda9a0aa66cbddc881748b1adbf5dbc34d80ebb07a3b85fb7a75be502e0
MD5 cb1afcb82f963f3eee229a948287352c
BLAKE2b-256 f560be98f4173ed0c7753be66a2f3692f46506951db597ecc33858e253a86db6

See more details on using hashes here.

File details

Details for the file shapely-2.0a1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: shapely-2.0a1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for shapely-2.0a1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 502fd501b5ea4f62886a80878da22be9e286608a9ea1238468968518d9af89a0
MD5 eae584db0a7282269e050606e849ef97
BLAKE2b-256 4d54998b9017cffcb3d7a73e34da394b4b447820e82f99b62823278708738c74

See more details on using hashes here.

File details

Details for the file shapely-2.0a1-cp39-cp39-win32.whl.

File metadata

  • Download URL: shapely-2.0a1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for shapely-2.0a1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 fcec8bf2306f176cda1179dd737085632ec96271d33c2c54f506d8a6b8655a3d
MD5 0ca84339de8ceeec8f9b5f2e3a893a9e
BLAKE2b-256 66ac0750ff9c1f91bf7531bf787df030b8fe4b02d19735789e9925017d7db44a

See more details on using hashes here.

File details

Details for the file shapely-2.0a1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for shapely-2.0a1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 085f1631e3a57b78ce2e6ea8d160e379828768b416641dc81e77f2047f108e1f
MD5 69f3573cfaebc99022550661e51a2292
BLAKE2b-256 121132e5cca2120df08b81747a4a189273d58eda555c52c8aead4e83de8e73cd

See more details on using hashes here.

File details

Details for the file shapely-2.0a1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for shapely-2.0a1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 522811d02cbc7d41ce61b1ced9beefc22088aae9a53cb40bf4c7fc24fb91f8df
MD5 9756f6fdc6836ae8d8ecf5ca15b991b9
BLAKE2b-256 f392c262cecac917b6c2fd9713f24da099a38c613504596b053e4e4cc1ddbf7e

See more details on using hashes here.

File details

Details for the file shapely-2.0a1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for shapely-2.0a1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4882cc2e9a5b6a2c5310bcf530fd64fe045c158d02b4d4ce84c255bb924e41f2
MD5 aa81bce631543f86e1bb0aae970e6cfc
BLAKE2b-256 2246b2751966a905e09707192d376c9b1b8a593cfbfd7af7f86b2f109fbdd58f

See more details on using hashes here.

File details

Details for the file shapely-2.0a1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for shapely-2.0a1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8ef6e7a6832072f4dc3feeff49dbb33057f714719c0ac489bc86eb9ba4a0ccf4
MD5 eeb2f548647b48107b60b5fabaa30863
BLAKE2b-256 08a5151d8218f62f6ebf287a28e85fea96ef2d57570eb6d85ec544e7d82bf568

See more details on using hashes here.

File details

Details for the file shapely-2.0a1-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for shapely-2.0a1-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 8683341053c63f0732332ba7ffa25658cbbc74d70b5b9d976ff6bbfe67c25c23
MD5 1bdad0ca400f45dd285a4a11ede1f3a8
BLAKE2b-256 67ea591a31ea848c46e2b4e5e622546a5886c9c636c4791ce40d57c009b8191a

See more details on using hashes here.

File details

Details for the file shapely-2.0a1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: shapely-2.0a1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for shapely-2.0a1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 b6296c60f049e9e55a20c36e5d925106cd9aafb2b4830e2fcedac51400a2a3e6
MD5 8b4dd647c53426de4096d0d9de0ed2d2
BLAKE2b-256 a0e3bc9dde2f36d4ee2621ca280ce537c583e5ad9c0953991d2adb819b605b96

See more details on using hashes here.

File details

Details for the file shapely-2.0a1-cp38-cp38-win32.whl.

File metadata

  • Download URL: shapely-2.0a1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for shapely-2.0a1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 ccd4e243650f373b4085036a513aea556e18a6e99d75483efda28937f3594b19
MD5 03131837a1a403eec49f6191ef00ab82
BLAKE2b-256 3697866fe04570255b73b450789b0d5b45950eaa325c2166c97266a53c0a3a44

See more details on using hashes here.

File details

Details for the file shapely-2.0a1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for shapely-2.0a1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 12d221693ed996b5fd55d817ae4322bdc792a91099dc3577ef674bf638c3e514
MD5 a2a190c9907ece21f53954d7c52a67a4
BLAKE2b-256 bd8220d43a3f4b90c144bac6209c379b8b1d370fe02d1c051272d7e330917d66

See more details on using hashes here.

File details

Details for the file shapely-2.0a1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for shapely-2.0a1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 857786c0ffcbf99ecf2fcc5bc95ec83cf8d658aa08387d3e383029a866a30ee2
MD5 fd171538cc78039f042c2ac54bada427
BLAKE2b-256 0e55410b0006022128e8db3a6068d503adf37a89089c21f093215545ea54c4f7

See more details on using hashes here.

File details

Details for the file shapely-2.0a1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for shapely-2.0a1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 dda0f6baaab6f9fbb175d692fa22ed3355c20f1fea04b954cedd84eca09e00c3
MD5 332b8525fb0885e6f2780049cc1229c1
BLAKE2b-256 b94fad9dab50587270166843c4ccad78a8eca2507c3417b708a3cb5acd4c3a19

See more details on using hashes here.

File details

Details for the file shapely-2.0a1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for shapely-2.0a1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b50ff159b64bf1b028ed3ad14e5d766981625371fb2443d3b62788a6abb2dc1b
MD5 32ed3c47e84c9029293b98da9af07d10
BLAKE2b-256 d24824533afc8589ab9d468d1c0b29e6bbc36d26277fef69e57f7b12ebeeaff2

See more details on using hashes here.

File details

Details for the file shapely-2.0a1-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for shapely-2.0a1-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 00ebedefa25e731437b94f0c179da4ef43e4f5fd1362f63a6e3b31065a1a2d9e
MD5 87f7b659f679575e561126e72823e84d
BLAKE2b-256 499e56493a549145b852f3a1adecdb1e2674c8adc5b0ceb4a7323ff0da68502e

See more details on using hashes here.

File details

Details for the file shapely-2.0a1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: shapely-2.0a1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for shapely-2.0a1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 f7cca6312429cf2e18dd24605840bc139fafd90b9956bcbc907c43e9b1327c63
MD5 42abb18ba05ca7c77b1f296b8531ab88
BLAKE2b-256 413a2cd0ff4318a9daf5f43d2c84e89c970adcb28dd80e40918dd3a36a7ade1f

See more details on using hashes here.

File details

Details for the file shapely-2.0a1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: shapely-2.0a1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for shapely-2.0a1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 7442a3464e3a301f42d906c869453aac376ce6a75c10675eafadc0dd454b0ccc
MD5 8fcb12152c74520866b890781943d866
BLAKE2b-256 d8f1f03a61298a5ff0a25aee7fb48d791f67dd49482afa57803d93fd2684486a

See more details on using hashes here.

File details

Details for the file shapely-2.0a1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for shapely-2.0a1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 eac897ee012587aecb98f2202ab8e88a34ea0d3575baa148e5ae628c89f5f93d
MD5 34e2e486be94d0536898941be278b16b
BLAKE2b-256 b183235cdb3c9a9f565e490f6b1604f90181d499ad5ef6a988c3c555b240e99f

See more details on using hashes here.

File details

Details for the file shapely-2.0a1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for shapely-2.0a1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 8ca48109de5c930c21abe0a387fa6c04fb1eb4f73d1baccbdd799312e1cefc64
MD5 56b778864aaf4c80351b4f3e006f1f50
BLAKE2b-256 5381d29c235b3861b80f7eaa8134594491cc89168940f4e5098a4a38da649804

See more details on using hashes here.

File details

Details for the file shapely-2.0a1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for shapely-2.0a1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 24476adc318069c3f5357d728e510002d618ee607fd62b3ee013dbbd25b984ae
MD5 64960c67e6927fc249d47f474d25225e
BLAKE2b-256 49d2abf761db882f5f0f91495b43fa372b3cedd05da0cd6360ffa601a0f30ffc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page