Skip to main content

Tier 2 Environmental Impact Assessment tool for sheep livestock.

Project description

🐏 Sheep_lca, a lifecycle assessment tool for sheep livestock systems

license python Code style: black

Based on the GOBLIN (General Overview for a Backcasting approach of Livestock INtensification) LifeCycle Analysis tool, the Sheep_lca module decouples this module making it an independent distribution package.

The package is shipped with key data for emissions factors, concentrate feed inputs, animal features, grassland parameters and upstream emissions.

Currently parameterised for Ireland, but the database can be updated with additional emissions factor contexts, which are selected able with an emissions factor key.

Final results are output as a dictionary object capturing emissions for:

-   enteric_ch4
-   manure_management_N2O
-   manure_management_CH4
-   manure_applied_N
-   N_direct_PRP
-   N_direct_PRP
-   N_indirect_PRP
-   N_direct_fertiliser
-   N_indirect_fertiliser
-   soils_CO2
-   soil_organic_N_direct
-   soil_organic_N_indirect
-   soil_inorganic_N_direct
-   soil_inorganic_N_indirect
-   soil_histosol_N_direct
-   crop_residues_N_direct
-   soil_N_direct
-   soil_N_indirect
-   soils_N2O

Note, that the soil_histosol_N_direct and crop_residues_N_direct category will be 0. Estimation of the soils N2O direct emissions from histosols uses requires the land use data. Emissions can be included using the landcover_lca module and the crop_lca module.

Installation

Install from git hub.

pip install "sheep_lca@git+https://github.com/GOBLIN-Proj/sheep_lca.git@main" 

Install from PyPI

pip install sheep_lca

Usage

import pandas as pd
from sheep_lca.resource_manager.models import load_livestock_data, load_farm_data
from sheep_lca.lca import ClimateChangeTotals


def main():
    # Instantiate ClimateChange Totals Class, passing Ireland as the emissions factor country
    climatechange = ClimateChangeTotals("ireland")

    # Create a dictionary to store results
    index = -1
    emissions_dict = climatechange.create_emissions_dictionary([index])

    # Create some data to generate results

    livestock_data = {
            'ef_country': ['ireland', 'ireland', 'ireland', 'ireland', 'ireland', 'ireland', 'ireland', 'ireland', 'ireland', 'ireland'],
            'farm_id': [2018, 2018, 2018, 2018, 2018, 2018, 2018, 2018, 2018, 2018],
            'year': [2018, 2018, 2018, 2018, 2018, 2018, 2018, 2018, 2018, 2018],
            'cohort': ['ewes', 'ewes', 'ram', 'ram', 'lamb_more_1_yr', 'lamb_more_1_yr', 'lamb_less_1_yr', 'lamb_less_1_yr', 'male_less_1_yr', 'male_less_1_yr'],
            'pop': [37812.8, 9453.199999, 1146.402738, 295.9906066, 2237.334377, 554.9823874, 17417.92548, 4365.861448, 10891.89346, 7628.877455],
            'weight': [68, 68, 86, 86, 68, 68, 33, 33, 33, 33],
            'daily_milk': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
            'forage': ['average', 'average', 'average', 'average', 'average', 'average', 'average', 'average', 'average', 'average'],
            'grazing': ['flat_pasture', 'hilly_pasture', 'flat_pasture', 'hilly_pasture', 'flat_pasture', 'hilly_pasture', 'flat_pasture', 'hilly_pasture', 'flat_pasture', 'hilly_pasture'],
            'con_type': ['concentrate', 'concentrate', 'concentrate', 'concentrate', 'concentrate', 'concentrate', 'concentrate', 'concentrate', 'concentrate', 'concentrate'],
            'con_amount': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
            't_outdoors': [21.36, 21.36, 21.36, 21.36, 21.36, 21.36, 21.36, 21.36, 21.36, 21.36],
            't_indoors': [2.64, 2.64, 2.64, 2.64, 2.64, 2.64, 2.64, 2.64, 2.64, 2.64],
            'wool': [4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5],
            't_stabled': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
            'mm_storage': ['solid', 'solid', 'solid', 'solid', 'solid', 'solid', 'solid', 'solid', 'solid', 'solid'],
            'daily_spreading': ['broadcast', 'broadcast', 'broadcast', 'broadcast', 'broadcast', 'broadcast', 'broadcast', 'broadcast', 'broadcast', 'broadcast'],
            'n_sold': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
            'n_bought': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
        }

    livestock_data_frame = pd.DataFrame(livestock_data)

      farm_data = {
        'ef_country': ['ireland'],
        'farm_id': [2018],
        'year': [2018],
        'total_urea_kg': [2072487.127],
        'total_lime_kg': [2072487.127],
        'an_n_fert': [2072487.127],
        'urea_n_fert': [2072487],
        'total_urea_abated': [17310655.18],
        'total_p_fert': [1615261.859],
        'total_k_fert': [3922778.8],
        'diesel_kg': [0],
        'elec_kwh': [0]
    }

    farm_dataframe = pd.DataFrame(farm_data)

    # load the dataframes
    animals = load_livestock_data(livestock_data_frame)
    farms = load_farm_data(farm_dataframe)

    animals_loc = list(animals.keys())[0]
    farm_loc = list(farms.keys())[0]

    # generate results and store them in the dictionary

    emissions_dict["enteric_ch4"][index] += climatechange.CH4_enteric_ch4(
        animals[animals_loc]["animals"]
    )
    emissions_dict["manure_management_N2O"][index] += climatechange.Total_storage_N2O(
        animals[animals_loc]["animals"]
    )
    emissions_dict["manure_management_CH4"][
        index
    ] += climatechange.CH4_manure_management(animals[animals_loc]["animals"])
    emissions_dict["manure_applied_N"][index] += 0

    emissions_dict["N_direct_PRP"][index] += climatechange.N2O_total_PRP_N2O_direct(
        animals[animals_loc]["animals"]
    )

    emissions_dict["N_indirect_PRP"][index] += climatechange.N2O_total_PRP_N2O_indirect(
        animals[animals_loc]["animals"]
    )
    emissions_dict["N_direct_fertiliser"][index] = climatechange.N2O_direct_fertiliser(
        farms[farm_loc].urea_n_fert,
        farms[farm_loc].total_urea_abated,
        farms[farm_loc].an_n_fert,
    )

    emissions_dict["N_indirect_fertiliser"][
        index
    ] += climatechange.N2O_fertiliser_indirect(
        farms[farm_loc].urea_n_fert,
        farms[farm_loc].total_urea_abated,
        farms[farm_loc].an_n_fert,
    )
    emissions_dict["soils_CO2"][index] += climatechange.CO2_soils_GWP(
        farms[farm_loc].total_urea_kg,
        farms[farm_loc].total_lime_kg,
    )

    # Add the totals
    emissions_dict["soil_organic_N_direct"][index] = (
        emissions_dict["manure_applied_N"][index]
        + emissions_dict["N_direct_PRP"][index]
    )
    emissions_dict["soil_organic_N_indirect"][index] = emissions_dict["N_indirect_PRP"][
        index
    ]

    emissions_dict["soil_inorganic_N_direct"][index] = emissions_dict[
        "N_direct_fertiliser"
    ][index]
    emissions_dict["soil_inorganic_N_indirect"][index] = emissions_dict[
        "N_indirect_fertiliser"
    ][index]

    emissions_dict["soil_N_direct"][index] = (
        emissions_dict["soil_organic_N_direct"][index]
        + emissions_dict["soil_inorganic_N_direct"][index]
    )

    emissions_dict["soil_N_indirect"][index] = (
        emissions_dict["soil_inorganic_N_indirect"][index]
        + emissions_dict["soil_organic_N_indirect"][index]
    )

    emissions_dict["soils_N2O"][index] = (
        emissions_dict["soil_N_direct"][index]
        + emissions_dict["soil_N_indirect"][index]
    )

    # Print the emission results dictionary
    print(emissions_dict)


if __name__ == "__main__":
    main()
    

License

This project is licensed under the terms of the MIT license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sheep_lca-0.3.1.tar.gz (41.0 kB view details)

Uploaded Source

Built Distribution

sheep_lca-0.3.1-py3-none-any.whl (41.8 kB view details)

Uploaded Python 3

File details

Details for the file sheep_lca-0.3.1.tar.gz.

File metadata

  • Download URL: sheep_lca-0.3.1.tar.gz
  • Upload date:
  • Size: 41.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.2 CPython/3.10.0 Linux/5.15.0-105-generic

File hashes

Hashes for sheep_lca-0.3.1.tar.gz
Algorithm Hash digest
SHA256 e30c8f06c2a18dfb3136dd98a632ba33e9488231ac923393324ad6cf88977caa
MD5 768c98e546482cc683f189eea7e231c8
BLAKE2b-256 d0ed04614d212802380703ad9f06327128f51e5ef7158d1da7213a8c99a5d79c

See more details on using hashes here.

File details

Details for the file sheep_lca-0.3.1-py3-none-any.whl.

File metadata

  • Download URL: sheep_lca-0.3.1-py3-none-any.whl
  • Upload date:
  • Size: 41.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.2 CPython/3.10.0 Linux/5.15.0-105-generic

File hashes

Hashes for sheep_lca-0.3.1-py3-none-any.whl
Algorithm Hash digest
SHA256 998f7426c84e65f9948b726350dad2364c93c437114e1e815e7dd0e221be3a8e
MD5 5fc45320d54203f4bd59187999c01ae3
BLAKE2b-256 92106c3bf3879de5f5cb5a0bd95c6d35e6d0c6c7363450785328dfd57cbce937

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page