Tools to manipulate ipython (jupyter) notebooks
Project description
sheet
Tools to manipulate ipython (jupyter) notebooks
To install: pip install sheet
Examples
from sheet import get_ipynb_cells, get_ipynb_cells_source
filepath = '~/my_notebook_folder/some_notebook.ipynb'
cells = get_ipynb_cells(filepath)
assert type(cells), type(cells[0]) == (list, dict)
cells = get_ipynb_cells_source(filepath)
assert type(cells), type(cells[0]) == (list, str)
from sheet import get_ipynb_cells_full_text
notebook_text = get_ipynb_cells_full_text(filepath)
print(notebook_text)
from sheet import SearchNotebooks
search = SearchNotebooks('~/my_notebooks_folder', max_levels=0) # enter max_levels=None for full recursive
search('bayesian')
array(['Spyn 01 - Potentials.ipynb',
'Bayes 01 - Potentials-Only explanation.ipynb', 'taped.ipynb',
'separation of concerns - how py2store does it.ipynb',
'equate.ipynb', 'peruse.ipynb',
'hum, taped, lined -- feeding audio to a pipeline.ipynb',
'owner.ipynb', 'best of 2020.ipynb',
'Bayes 02 - Potentials - And drug data example.ipynb'],
dtype=object)
Okay, we have a list of notebooks that match our query (i.e. the highest average alignment to our query -- not just keyword matching!), but what cells in particular have the highest relevance?
Well, we can now peruse our notebook at that level, with a notebook cells searcher. (Note: You can combine both to make a cell-level searcher from the folder level.)
ss = search.search_notebook('Spyn 01 - Potentials.ipynb')
ss('bayesian')
array([['Spyn 01 - Potentials.ipynb', 6],
['Spyn 01 - Potentials.ipynb', 2],
['Spyn 01 - Potentials.ipynb', 71],
['Spyn 01 - Potentials.ipynb', 88],
['Spyn 01 - Potentials.ipynb', 91],
['Spyn 01 - Potentials.ipynb', 84],
['Spyn 01 - Potentials.ipynb', 85],
['Spyn 01 - Potentials.ipynb', 86],
['Spyn 01 - Potentials.ipynb', 87],
['Spyn 01 - Potentials.ipynb', 82]], dtype=object)
ss['Spyn 01 - Potentials.ipynb', 6]
'# Potentials - A key data structure to Discrete Bayesian Inference'
ss['Spyn 01 - Potentials.ipynb', 87]
'### Making a few potentials from pts data'
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
sheet-0.0.3.tar.gz
(2.8 kB
view hashes)
Built Distribution
sheet-0.0.3-py3-none-any.whl
(6.8 kB
view hashes)