Skip to main content

Persistent cache for Python cachetools.

Project description

shelved_cache

Persistent cache implementation for Python cachetools.

Behaves like any Cache implementation, but entries are persisted to disk.

Original repository: https://github.com/mariushelf/shelved_cache

Usage example

from shelved_cache import PersistentCache
from cachetools import LRUCache

filename = 'mycache'

# create persistency around an LRUCache
pc = PersistentCache(LRUCache, filename=filename, maxsize=2)

# we can now use the cache like a normal LRUCache.
# But: the cache is persisted to disk.
pc["a"] = 42
pc["b"] = 43

assert pc["a"] == 42
assert pc["b"] == 43

# close the file
pc.close()

# Now in the same script or in another script, we can re-load the cache:
pc2 = PersistentCache(LRUCache, filename=filename, maxsize=2)
assert pc2["a"] == 42
assert pc2["b"] == 43

Use as a decorator

Just like a regular cachetools.Cache, the PersistentCache can be used with cachetools' cached decorator:

from shelved_cache import PersistentCache
from cachetools import LRUCache

filename = 'mycache'
pc = PersistentCache(LRUCache, filename, maxsize=2)

@cachetools.cached(pc)
def square(x):
    print("called")
    return x * x

assert square(3) == 9
# outputs "called"
assert square(3) == 9
# no output because the cache is used

Features

persistent cache

See usage examples above.

Async decorators

The package contains equivalents for cachetools' cached and cachedmethod decorators which support wrapping async methods. You can find them in the decorators submodule.

They support both synchronous and asynchronous functions and methods.

Examples:

from shelved_cache import cachedasyncmethod
from cachetools import LRUCache

class A:
    # decorate an async method:
    @cachedasyncmethod(lambda self: LRUCache(2))
    async def asum(self, a, b):
        return a + b

a = A()
assert await a.asum(1, 2) == 3
    
class S:
    @cachedasyncmethod(lambda self: LRUCache(2))
    def sum(self, a, b):
        return a + b

s = S()
assert s.sum(1, 2) == 3

Support for lists as function arguments

Using the autotuple_hashkey function, list arguments are automatically converted to tuples, so that they support hashing.

Example:

from cachetools import cached, LRUCache
from shelved_cache.keys import autotuple_hashkey

@cached(LRUCache(2), key=autotuple_hashkey)
def sum(values):
    return values[0] + values[1]

# fill cache
assert sum([1, 2]) == 3

# access cache
assert sum([1, 2]) == 3

Acknowledgements

License

Author: Marius Helf (helfsmarius@gmail.com)

License: MIT -- see LICENSE

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

shelved_cache-0.2.0.tar.gz (6.2 kB view details)

Uploaded Source

Built Distribution

shelved_cache-0.2.0-py3-none-any.whl (7.2 kB view details)

Uploaded Python 3

File details

Details for the file shelved_cache-0.2.0.tar.gz.

File metadata

  • Download URL: shelved_cache-0.2.0.tar.gz
  • Upload date:
  • Size: 6.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.2.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.8.6

File hashes

Hashes for shelved_cache-0.2.0.tar.gz
Algorithm Hash digest
SHA256 5e267ac8acf73a83756013a22ec5aeab0495723ca39f097a0683e86ba81a1527
MD5 d1f6e486f7d7bb128731a252d522d921
BLAKE2b-256 dc3cee03afd1f130bf9f86bd6127e4b78ced12ea61aa03598dc87d48371539c6

See more details on using hashes here.

File details

Details for the file shelved_cache-0.2.0-py3-none-any.whl.

File metadata

  • Download URL: shelved_cache-0.2.0-py3-none-any.whl
  • Upload date:
  • Size: 7.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.2.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.8.6

File hashes

Hashes for shelved_cache-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 3e44c27e8f1441d9e060c981dca17f6b61ec7bbf83815acdbc6232af03082805
MD5 881180e29d7776151f0693dc52b10e23
BLAKE2b-256 246093dd5c4587c20d8b500d7e564dc36a89ce83db141d7810f8d47e723de407

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page