Skip to main content

Persistent cache for Python cachetools with fixes to major issues.

Project description

Shelved Cache

Tests codecov PyPI version Downloads

Persistent cache implementation for Python cachetools.

Behaves like any Cache implementation, but entries are persisted to disk.

Original repository: https://github.com/mariushelf/shelved_cache

Usage example

from shelved_cache import PersistentCache
from cachetools import LRUCache

filename = 'mycache'

# create persistency around an LRUCache
pc = PersistentCache(LRUCache, filename=filename, maxsize=2)

# we can now use the cache like a normal LRUCache.
# But: the cache is persisted to disk.
pc["a"] = 42
pc["b"] = 43

assert pc["a"] == 42
assert pc["b"] == 43

# close the file
pc.close()

# Now in the same script or in another script, we can re-load the cache:
pc2 = PersistentCache(LRUCache, filename=filename, maxsize=2)
assert pc2["a"] == 42
assert pc2["b"] == 43

Use as a decorator

Just like a regular cachetools.Cache, the PersistentCache can be used with the persistent_cached decorator:

[!WARNING] Do not use cachetools' cached decorator with the persistent cache, or you will experience functions with the same signature returning the wrong values.

from shelved_cache.decorators import persistent_cached
from shelved_cache import PersistentCache
from cachetools import LRUCache

filename = 'mycache'
pc = PersistentCache(LRUCache, filename, maxsize=2)

@persistent_cached(pc)
def square(x):
    print("called")
    return x * x

assert square(3) == 9
# outputs "called"
assert square(3) == 9
# no output because the cache is used

Features

persistent cache

See usage examples above.

Async decorators

The package contains equivalents for cachetools' cached and cachedmethod decorators which support wrapping async methods. You can find them in the decorators submodule.

They support both synchronous and asynchronous functions and methods.

Examples:

from shelved_cache import cachedasyncmethod
from cachetools import LRUCache

class A:
    # decorate an async method:
    @cachedasyncmethod(lambda self: LRUCache(2))
    async def asum(self, a, b):
        return a + b

a = A()
assert await a.asum(1, 2) == 3
    
class S:
    @cachedasyncmethod(lambda self: LRUCache(2))
    def sum(self, a, b):
        return a + b

s = S()
assert s.sum(1, 2) == 3

Support for lists as function arguments

Using the autotuple_hashkey function, list arguments are automatically converted to tuples, so that they support hashing.

Example:

from cachetools import cached, LRUCache
from shelved_cache.keys import autotuple_hashkey

@cached(LRUCache(2), key=autotuple_hashkey)
def sum(values):
    return values[0] + values[1]

# fill cache
assert sum([1, 2]) == 3

# access cache
assert sum([1, 2]) == 3

Changelog

0.3.1

  • fix for Windows users
  • add Windows and MacOS to test suite

0.3.0

  • add support for Python 3.10 and 3.11
  • better error message when trying to use the same file for multiple caches
  • CI/CD pipeline
  • fixes for documentation

0.2.1

  • improved error handling

Acknowledgements

License

Author: Marius Helf (helfsmarius@gmail.com)

License: MIT -- see LICENSE

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

shelved_cache_fixed-0.3.1.tar.gz (7.0 kB view hashes)

Uploaded Source

Built Distribution

shelved_cache_fixed-0.3.1-py3-none-any.whl (8.3 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page