Skip to main content

SHIFT OCR is a library for handwriting text segmentation and character recognition.

Project description

SHIFTLAB OCR

SHIFT OCR is a library for handwriting text segmentation and character recognition.

Get Started

pip install shiftlab_ocr

Doc2Text

Reader from doc2text performs text detection and the following recognition.

import urllib

from shiftlab_ocr.doc2text.reader import Reader


urllib.request.urlretrieve(
  'https://raw.githubusercontent.com/konverner/shiftlab_ocr/main/demo_image.png',
   'test.png')
   
reader = Reader()
result = reader.doc2text("test.png")

Display recognized text:

print(result[0])

Действительно ли добро сильнее зла?
Именно над этим вопросом аставля заставляет
читателей задуматься В. Тендряков.
Автор рассматривает данную пробле-
му на конкретном примере, рассказывая
историю 00 заблудившемся немце русских
солдатах, которые пожалели врала и
позволи ему остаться землянке. 

Display segmented crops:

import matplotlib.pyplot as plt

def show_img_grid(images, N):
    n = int(N**(0.5))
    k = 0
    f, axarr = plt.subplots(n,n,figsize=(10,10))
    for i in range(n):
        for j in range(n):
            axarr[i,j].imshow(images[k].img)
            k += 1
    f.show()

show_img_grid(result[1], 48)

Generator of handwriting

It generates handwriting script with random backgrounds and handwriting fonts with a given string or a list of strings saved in source.txt.

Generating a random sample from a string:

from shiftlab_ocr.generator.generator import Generator

g = Generator(lang='ru')
s = g.generate_from_string('Москва',min_length=4,max_length=24) # get from a string
s

Generating batch of random samples from source.txt:

import numpy as np

# upload source.txt with one word per line
g.upload_source('source.txt')
b = g.generate_batch(12,4,13) # get batch of random samples from source.txt
fig=plt.figure(figsize=(10, 10))
rows = int(len(b)/4) + 2
columns = int(len(b)/8) + 2
for i in range(len(b)):
  fig.add_subplot(rows, columns, i+1)
  plt.imshow(np.asarray(b[i][0])) 

Also, see Google Colab Demo

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

shiftlab-ocr-0.3.2.tar.gz (1.6 MB view details)

Uploaded Source

Built Distribution

shiftlab_ocr-0.3.2-py3-none-any.whl (1.7 MB view details)

Uploaded Python 3

File details

Details for the file shiftlab-ocr-0.3.2.tar.gz.

File metadata

  • Download URL: shiftlab-ocr-0.3.2.tar.gz
  • Upload date:
  • Size: 1.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.13

File hashes

Hashes for shiftlab-ocr-0.3.2.tar.gz
Algorithm Hash digest
SHA256 db95692c5af6c7a2a317ba36e6df5ce1fbbb15814a16743ade21098c5bdab162
MD5 3328b64d7446d8db3bbc36477922b1b9
BLAKE2b-256 0272046035814cd471be9534bd7b0cb831b376cc9cac178edf58d7bca68cab00

See more details on using hashes here.

File details

Details for the file shiftlab_ocr-0.3.2-py3-none-any.whl.

File metadata

File hashes

Hashes for shiftlab_ocr-0.3.2-py3-none-any.whl
Algorithm Hash digest
SHA256 4f04a0a2292fda20d6d95ec652f24342a5a85a64984af63bac0c25e8656bc565
MD5 fed67162fd9052e23eda0312a52190e9
BLAKE2b-256 cd30b3be68e7b970c7b3140607367dede17227e11209aa19ab9069ec08cbee52

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page