Skip to main content

A keras-like API deep learning framework,realized by Numpy

Project description

Shinnosuke : Deep learning framework

Descriptions

  1. Based on Numpy(CPU version)

  2. Completely realized by Python only

  3. Keras-like API

  4. Graph are used to construct the system

  5. For deep learning studying

Features

  1. Native to Python

  2. Keras-like API

  3. Easy to get start

  4. Commonly used models are provided: Dense, Conv2D, MaxPooling2D, LSTM, SimpleRNN, etc

  5. Several basic networks Examples

  6. Sequential model and Functional model are implemented

  7. Autograd is supported

  8. training is conducted on forward graph and backward graph

Installation

Requirements(recommend)

Numpy=1.15.0

matplotlib=3.0.3

Using pip:

$ pip install shinnosuke

Examples

Shinnosuke provides several classcic AI tasks:

  • mnist handwrite number recognition

    • Dense(FullyConnected neural network)
    from shinnosuke.models import Sequential
    from shinnosuke.layers.FC import Dense
    m=Sequential()
    m.add(Dense(500,activation='relu',n_in=784))  
    #must be specify n_in if first layer
    m.add(Dense(10,activation='softmax'))  
    #no need to specify n_in as shinnosuke will automatic calculate the input and output dim
    m.compile(optimizer='sgd',loss='sparse_categorical_crossentropy') 
    #specify optimizer and objective,if your want to apply softmax for multi-classify tasks and your labels are one-hot vectors/matrixm,use sparse_categorical_crossentropy(recommend),otherwise use categorical_crossentropy.
    model.fit(trainX,trainy,batch_size=512,epochs=5,validation_ratio=0.) 
    
    • CNN(Convolutional neural network)
    X_input=Input(shape=(None,1,28,28))  
    #represents batch_size,channels,height and width respectively,notice that channels must be at the axis 1 instead of -1
    X=Conv2D(8,(3,3),padding='VALID',initializer='normal',activation='relu')(X_input)
    X=MaxPooling2D((2,2))(X)
    X=Flatten()(X)
    X=Dense(10,initializer='normal',activation='softmax')(X)
    model=Model(inputs=X_input,outputs=X)
    model.compile(optimizer='sgd',loss='sparse_categorical_cross_entropy')
    model.fit(trainX,trainy,batch_size=256,epochs=80,validation_ratio=0.)
    

Supports

Two model types:

1.Sequential

from shinnosuke.models import Sequential
from shinnosuke.layers.FC import Dense

m=Sequential()

m.add(Dense(500,activation='relu',n_in=784))

m.add(Dense(10,activation='softmax'))

m.compile(optimizer='sgd',loss='sparse_categorical_crossentropy',learning_rate=0.1)

m.fit(trainX,trainy,batch_size=512,epochs=1,validation_ratio=0.)

2.Model

from shinnosuke.models import Model
from shinnosuke.layers.FC import Dense
from shinnosuke.layers.Base import Input

X_input=Input(shape=(None,784))

X=Dense(500,activation='relu')(X_input)

X=Dense(10,activation='softmax')(X)

model=Model(inputs=X_input,outputs=X)

model.compile(optimizer='sgd',loss='sparse_categorical_crossentropy',learning_rate=0.1)

model.fit(trainX,trainy,batch_size=512,epochs=1,validation_ratio=0.)

Two basic class:

- Layer:

  • Dense

  • Conv2D

  • MaxPooling2D

  • MeanPooling2D

  • Activation

  • Input

  • Dropout

  • BatchNormalization

  • TimeDistributed

  • SimpleRNN

  • LSTM

  • GRU (waiting for implemented)

  • ZeroPadding2D

  • Operations( includes Add, Minus, Multiply, Matmul, and so on basic operations for Layer and Node)

Layer Operations are conducted to construt the graph. for examples:

- Node:

  • Variable
  • Constant

While Node Operations have both dynamic graph and static graph features

x=Variable(3)
y=Variable(5)
z=x+y
print(z.get_value())

#you suppose get a value 8,at same time shinnosuke construct a graph as below(waiting to implement):

Optimizers

  • StochasticGradientDescent

  • Momentum

  • RMSprop

  • AdaGrad

  • AdaDelta

  • Adam

Waiting for implemented more

Objectives

  • MeanSquaredError

  • MeanAbsoluteError

  • BinaryCrossEntropy

  • SparseCategoricalCrossEntropy

  • CategoricalCrossEntropy

Activations

  • Relu

  • Linear

  • Sigmoid

  • Tanh

  • Softmax

Initializations

  • Zeros

  • Ones

  • Uniform

  • LecunUniform

  • GlorotUniform

  • HeUniform

  • Normal

  • LecunNormal

  • GlorotNormal

  • HeNormal

  • Orthogonal

Regularizes

waiting for implement.

Utils

  • get_batches (generate mini-batch)

  • to_categorical (convert inputs to one-hot vector/matrix)

  • concatenate (concatenate Nodes that have the same shape in specify axis)

  • pad_sequences (pad sequences to the same length)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

shinnosuke-0.6.3.tar.gz (28.3 kB view details)

Uploaded Source

File details

Details for the file shinnosuke-0.6.3.tar.gz.

File metadata

  • Download URL: shinnosuke-0.6.3.tar.gz
  • Upload date:
  • Size: 28.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.9.1 tqdm/4.26.0 CPython/3.7.0

File hashes

Hashes for shinnosuke-0.6.3.tar.gz
Algorithm Hash digest
SHA256 cbaf3b2040326ca5d418ef025bc92ddc72b975bad4184dfff8246eaad7bcc7f4
MD5 86ac5ba5cf45aab0dc4df82f5eb6e25a
BLAKE2b-256 0716cd5b196a07943131c2d9a064ed97d2fe6e36ab1d3a62457942e939297efd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page