Skip to main content

A keras-like API deep learning framework,realized by cupy

Project description

#Shinnosuke-GPU : Deep learning framework ##Descriptions

  1. Based on Cupy(GPU version)

  2. Completely realized by Python only

  3. Keras-like API

  4. For deep learning studying

##Features

  1. Native to Python

  2. Keras-like API

  3. Easy to get start

  4. Commonly used models are provided: Dense, Conv2D, MaxPooling2D, LSTM, SimpleRNN, etc

  5. Several basic networks Examples

  6. Sequential model and Functional model are implemented

  7. Autograd is supported

##Installation Using pip:

$ pip install shinnosuke-gpu

##Supports

Two model types:

1.Sequential

from shinnosuke.models import Sequential
from shinnosuke.layers.FC import Dense

m=Sequential()

m.add(Dense(500,activation='relu',n_in=784))

m.add(Dense(10,activation='softmax'))

m.compile(optimizer='sgd',loss='sparse_categorical_crossentropy',learning_rate=0.1)

m.fit(trainX,trainy,batch_size=512,epochs=1,validation_ratio=0.)

2.Model

from shinnosuke.models import Model
from shinnosuke.layers.FC import Dense
from shinnosuke.layers.Base import Input

X_input=Input(shape=(None,784))

X=Dense(500,activation='relu')(X_input)

X=Dense(10,activation='softmax')(X)

model=Model(inputs=X_input,outputs=X)

model.compile(optimizer='sgd',loss='sparse_categorical_crossentropy',learning_rate=0.1)

model.fit(trainX,trainy,batch_size=512,epochs=1,validation_ratio=0.)

Two basic class:

- Layer:

  • Dense

  • Conv2D

  • MaxPooling2D

  • MeanPooling2D

  • Activation

  • Input

  • Dropout

  • BatchNormalization

  • TimeDistributed

  • SimpleRNN

  • LSTM

  • GRU (waiting for implemented)

  • ZeroPadding2D

  • Operations( includes Add, Minus, Multiply, Matmul, and so on basic operations for Layer and Node)

####- Node:

  • Variable
  • Constant

###Optimizers

  • StochasticGradientDescent

  • Momentum

  • RMSprop

  • AdaGrad

  • AdaDelta

  • Adam

Waiting for implemented more

###Objectives

  • MeanSquaredError

  • MeanAbsoluteError

  • BinaryCrossEntropy

  • SparseCategoricalCrossEntropy

  • CategoricalCrossEntropy

###Activations

  • Relu

  • Linear

  • Sigmoid

  • Tanh

  • Softmax

###Initializations

  • Zeros

  • Ones

  • Uniform

  • LecunUniform

  • GlorotUniform

  • HeUniform

  • Normal

  • LecunNormal

  • GlorotNormal

  • HeNormal

  • Orthogonal

###Regularizes waiting for implement.

###Utils

  • get_batches (generate mini-batch)

  • to_categorical (convert inputs to one-hot vector/matrix)

  • concatenate (concatenate Nodes that have the same shape in specify axis)

  • pad_sequences (pad sequences to the same length)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

shinnosuke-gpu-0.7.1.tar.gz (27.1 kB view details)

Uploaded Source

File details

Details for the file shinnosuke-gpu-0.7.1.tar.gz.

File metadata

  • Download URL: shinnosuke-gpu-0.7.1.tar.gz
  • Upload date:
  • Size: 27.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.9.1 tqdm/4.26.0 CPython/3.7.0

File hashes

Hashes for shinnosuke-gpu-0.7.1.tar.gz
Algorithm Hash digest
SHA256 11e0e780f79ea28b43dea7d2426d9ebfd0921b52ec654d9deb22be3f04c09cac
MD5 28e6d3f9b2797dad566919dbb1fffe96
BLAKE2b-256 a26ae80b0f74b2a9a7efed526697f7d616984ff93976dcc06609c3e83f8daf23

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page