A keras-like API deep learning framework,realized by cupy
Project description
#Shinnosuke-GPU : Deep learning framework ##Descriptions
-
Based on Cupy(GPU version)
-
Completely realized by Python only
-
Keras-like API
-
For deep learning studying
##Features
-
Native to Python
-
Keras-like API
-
Easy to get start
-
Commonly used models are provided: Dense, Conv2D, MaxPooling2D, LSTM, SimpleRNN, etc
-
Several basic networks Examples
-
Sequential model and Functional model are implemented
-
Autograd is supported
##Installation Using pip:
$ pip install shinnosuke-gpu
##Supports
Two model types:
1.Sequential
from shinnosuke.models import Sequential
from shinnosuke.layers.FC import Dense
m=Sequential()
m.add(Dense(500,activation='relu',n_in=784))
m.add(Dense(10,activation='softmax'))
m.compile(optimizer='sgd',loss='sparse_categorical_crossentropy',learning_rate=0.1)
m.fit(trainX,trainy,batch_size=512,epochs=1,validation_ratio=0.)
2.Model
from shinnosuke.models import Model
from shinnosuke.layers.FC import Dense
from shinnosuke.layers.Base import Input
X_input=Input(shape=(None,784))
X=Dense(500,activation='relu')(X_input)
X=Dense(10,activation='softmax')(X)
model=Model(inputs=X_input,outputs=X)
model.compile(optimizer='sgd',loss='sparse_categorical_crossentropy',learning_rate=0.1)
model.fit(trainX,trainy,batch_size=512,epochs=1,validation_ratio=0.)
Two basic class:
- Layer:
-
Dense
-
Conv2D
-
MaxPooling2D
-
MeanPooling2D
-
Activation
-
Input
-
Dropout
-
BatchNormalization
-
TimeDistributed
-
SimpleRNN
-
LSTM
-
GRU (waiting for implemented)
-
ZeroPadding2D
-
Operations( includes Add, Minus, Multiply, Matmul, and so on basic operations for Layer and Node)
####- Node:
- Variable
- Constant
###Optimizers
-
StochasticGradientDescent
-
Momentum
-
RMSprop
-
AdaGrad
-
AdaDelta
-
Adam
Waiting for implemented more
###Objectives
-
MeanSquaredError
-
MeanAbsoluteError
-
BinaryCrossEntropy
-
SparseCategoricalCrossEntropy
-
CategoricalCrossEntropy
###Activations
-
Relu
-
Linear
-
Sigmoid
-
Tanh
-
Softmax
###Initializations
-
Zeros
-
Ones
-
Uniform
-
LecunUniform
-
GlorotUniform
-
HeUniform
-
Normal
-
LecunNormal
-
GlorotNormal
-
HeNormal
-
Orthogonal
###Regularizes waiting for implement.
###Utils
-
get_batches (generate mini-batch)
-
to_categorical (convert inputs to one-hot vector/matrix)
-
concatenate (concatenate Nodes that have the same shape in specify axis)
-
pad_sequences (pad sequences to the same length)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file shinnosuke-gpu-0.7.1.tar.gz
.
File metadata
- Download URL: shinnosuke-gpu-0.7.1.tar.gz
- Upload date:
- Size: 27.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.9.1 tqdm/4.26.0 CPython/3.7.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 11e0e780f79ea28b43dea7d2426d9ebfd0921b52ec654d9deb22be3f04c09cac |
|
MD5 | 28e6d3f9b2797dad566919dbb1fffe96 |
|
BLAKE2b-256 | a26ae80b0f74b2a9a7efed526697f7d616984ff93976dcc06609c3e83f8daf23 |