Skip to main content

A keras-like API deep learning framework,realized by cupy

Project description

#Shinnosuke-GPU : Deep learning framework ##Descriptions

  1. Based on Cupy(GPU version)

  2. Completely realized by Python only

  3. Keras-like API

  4. For deep learning studying

##Features

  1. Native to Python

  2. Keras-like API

  3. Easy to get start

  4. Commonly used models are provided: Dense, Conv2D, MaxPooling2D, LSTM, SimpleRNN, etc

  5. Several basic networks Examples

  6. Sequential model and Functional model are implemented

  7. Autograd is supported

##Installation Using pip:

$ pip install shinnosuke-gpu

##Supports

Two model types:

1.Sequential

from shinnosuke.models import Sequential
from shinnosuke.layers.FC import Dense

m=Sequential()

m.add(Dense(500,activation='relu',n_in=784))

m.add(Dense(10,activation='softmax'))

m.compile(optimizer='sgd',loss='sparse_categorical_crossentropy',learning_rate=0.1)

m.fit(trainX,trainy,batch_size=512,epochs=1,validation_ratio=0.)

2.Model

from shinnosuke.models import Model
from shinnosuke.layers.FC import Dense
from shinnosuke.layers.Base import Input

X_input=Input(shape=(None,784))

X=Dense(500,activation='relu')(X_input)

X=Dense(10,activation='softmax')(X)

model=Model(inputs=X_input,outputs=X)

model.compile(optimizer='sgd',loss='sparse_categorical_crossentropy',learning_rate=0.1)

model.fit(trainX,trainy,batch_size=512,epochs=1,validation_ratio=0.)

Two basic class:

- Layer:

  • Dense

  • Conv2D

  • MaxPooling2D

  • MeanPooling2D

  • Activation

  • Input

  • Dropout

  • BatchNormalization

  • TimeDistributed

  • SimpleRNN

  • LSTM

  • GRU (waiting for implemented)

  • ZeroPadding2D

  • Operations( includes Add, Minus, Multiply, Matmul, and so on basic operations for Layer and Node)

####- Node:

  • Variable
  • Constant

###Optimizers

  • StochasticGradientDescent

  • Momentum

  • RMSprop

  • AdaGrad

  • AdaDelta

  • Adam

Waiting for implemented more

###Objectives

  • MeanSquaredError

  • MeanAbsoluteError

  • BinaryCrossEntropy

  • SparseCategoricalCrossEntropy

  • CategoricalCrossEntropy

###Activations

  • Relu

  • Linear

  • Sigmoid

  • Tanh

  • Softmax

###Initializations

  • Zeros

  • Ones

  • Uniform

  • LecunUniform

  • GlorotUniform

  • HeUniform

  • Normal

  • LecunNormal

  • GlorotNormal

  • HeNormal

  • Orthogonal

###Regularizes waiting for implement.

###Utils

  • get_batches (generate mini-batch)

  • to_categorical (convert inputs to one-hot vector/matrix)

  • concatenate (concatenate Nodes that have the same shape in specify axis)

  • pad_sequences (pad sequences to the same length)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for shinnosuke-gpu, version 0.7.1
Filename, size File type Python version Upload date Hashes
Filename, size shinnosuke-gpu-0.7.1.tar.gz (27.1 kB) File type Source Python version None Upload date Hashes View

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page