If your data is messy - Use Shmessy!
Project description
Shmessy
If your data is messy - Use Shmessy!
Shmessy designed to deal with messy pandas dataframes. We all knows the frustrating times when we as analysts or data-engineers should handle messy dataframe and analyze them by ourselves.
The goal of this tiny tool is to identify the physical / logical data type for each Dataframe column. It based on fast validators that will validate the data (Based on a sample) against regex / pydantic types or any additional validation function that you want to implement.
As you understand, this tool was designed to deal with dirty data, ideally developed for Dataframes generated from CSV / Flat files or any source that doesn't contain strict schema.
Installation
pip install shmessy
Usage
You have two ways to use this tool
Identify the Dataframe schema
import pandas as pd
from shmessy import Shmessy
df = pd.read_csv('/tmp/file.csv')
inferred_schema = Shmessy().infer_schema(df)
Output (inferred_schema dump):
{
"infer_duration_ms": 12,
"columns": [
{
"field_name": "id",
"source_type": "Integer",
"inferred_type": "Integer"
},
{
"field_name": "email_value",
"source_type": "String",
"inferred_type": "Email"
},
{
"field_name": "date_value",
"source_type": "String",
"inferred_type": "Date",
"inferred_pattern": "%d-%m-%Y"
},
{
"field_name": "datetime_value",
"source_type": "String",
"inferred_type": "Datetime",
"inferred_pattern": "%Y/%m/%d %H:%M:%S"
},
{
"field_name": "yes_no_data",
"source_type": "String",
"inferred_type": "Boolean",
"inferred_pattern": [
"YES",
"NO"
]
},
{
"field_name": "unix_value",
"source_type": "Integer",
"inferred_type": "UnixTimestamp",
"inferred_pattern": "ms"
},
{
"field_name": "ip_value",
"source_type": "String",
"inferred_type": "IPv4"
}
]
}
Identify and fix Pandas Dataframe
This piece of code will change the column types of the input Dataframe according to Messy infer.
import pandas as pd
from shmessy import Shmessy
df = pd.read_csv('/tmp/file.csv')
fixed_df = Shmessy().fix_schema(df)
Original Dataframe
Fixed Dataframe
Read Messy CSV file
from shmessy import Shmessy
df = Shmessy().read_csv('/tmp/file.csv')
Original file
Fixed Dataframe
API
Constructor
shmessy = Shmessy(
sample_size: Optional[int] = 1000
)
read_csv
shmessy.read_csv(
filepath_or_buffer: str | TextIO | BinaryIO,
use_sniffer: Optional[bool] = True, # Use python sniffer to identify the dialect (seperator / quote-char / etc...)
fixed_schema: Optional[ShmessySchema] = None, # Fix the given CSV according to this schema
fix_column_names: Optional[bool] = False, # Replace non-alphabetic/numeric chars with underscore
) -> DataFrame
infer_schema
shmessy.infer_schema(
df: Dataframe # Input dataframe
) -> ShmessySchema
fix_schema
shmessy.fix_schema(
df: Dataframe,
fix_column_names: Optional[bool] = False, # Replace non-alphabetic/numeric chars with underscore
fixed_schema: Optional[ShmessySchema] = None, # Fix the given DF according to this schema
) -> DataFrame
get_inferred_schema
shmessy.get_inferred_schema() -> ShmessySchema
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.