Paper - Pytorch
Project description
ShortCircuit
Install
Example
import torch
from shortcircuit.main import ShortCircuitNet
# Create an instance of the ShortCircuitNet model with the specified parameters
model = ShortCircuitNet(512, 6, 8, 64, 2048, 0.1)
# Generate a random input tensor of shape (1, 512, 512)
input_tensor = torch.randn(1, 512, 512)
# Pass the input tensor through the model to get the output tensor
output_tensor = model(input_tensor)
# Print the output tensor
print(output_tensor)
Missing
Input Sequence: Node Hidden Embeddings Target Sequence: Target Hidden Embedding
License
MIT
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file short_circuit_torch-0.0.1.tar.gz
.
File metadata
- Download URL: short_circuit_torch-0.0.1.tar.gz
- Upload date:
- Size: 3.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.8.3 CPython/3.12.3 Darwin/23.3.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ba2f99c9fd139108017ff0693d7c347be36762636dbe0aed58c66d535afdb68a |
|
MD5 | 02f4a3a1e000747cfe086c6fe8cfee2d |
|
BLAKE2b-256 | b9cf790f17fc6ddef1badad60a141ed13766f7251e04fa679ae65daca8cf28db |
File details
Details for the file short_circuit_torch-0.0.1-py3-none-any.whl
.
File metadata
- Download URL: short_circuit_torch-0.0.1-py3-none-any.whl
- Upload date:
- Size: 3.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.8.3 CPython/3.12.3 Darwin/23.3.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f7a123a283af24c91ef9df47a7b62b02437509c61dc9218eb909b12d58788242 |
|
MD5 | 29b81006e0a56fadb601fe0a28258876 |
|
BLAKE2b-256 | 55ab1e845f4a2a899d5cd122e1a77fb7bfd268eb1410c7cf7025073cc75b0ba9 |