Skip to main content

sequential Information Bottleneck

Project description

sequential Information Bottleneck (sIB)

GitHub Actions CI status

Scope

This project provides an optimized implementation of the text clustering algorithm "sequential Information Bottleneck" (sIB), introduced by Slonim, Friedman and Tishby (2002). The algorithm is implemented in Python and C++ and packaged into a python library. For a documentation of this implementation see here.

Usage

The main class in this library is SIB, which implements the clustering interface of SciKit Learn, providing methods such as fit(), fit_transform(), fit_predict(), etc.

The sample code below clusters the 18.8K documents of the 20-News-Groups dataset into 20 clusters:

import numpy as np
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.datasets import fetch_20newsgroups
from sklearn import metrics
from sib import SIB

# read the dataset
dataset = fetch_20newsgroups(subset='all', categories=None,
                             shuffle=True, random_state=256)

gold_labels = dataset.target
n_clusters = np.unique(gold_labels).shape[0]

# create count vectors using the 10K most frequent words
vectorizer = CountVectorizer(max_features=10000)
X = vectorizer.fit_transform(dataset.data)

# SIB initialization and clustering; parameters:
# perform 10 random initializations (n_init=10); the best one is returned.
# up to 15 optimization iterations in each initialization (max_iter=15)
# use all cores in the running machine for parallel execution (n_jobs=-1)
sib = SIB(n_clusters=n_clusters, random_state=128, n_init=10,
          n_jobs=-1, max_iter=15, verbose=True)
sib.fit(X)

# report standard clustering metrics
print("Homogeneity: %0.3f" % metrics.homogeneity_score(gold_labels, sib.labels_))
print("Completeness: %0.3f" % metrics.completeness_score(gold_labels, sib.labels_))
print("V-measure: %0.3f" % metrics.v_measure_score(gold_labels, sib.labels_))
print("Adjusted Rand-Index: %.3f" % metrics.adjusted_rand_score(gold_labels, sib.labels_))

Expected result:

sIB information stats on best partition:
	I(T;Y) = 0.5685, H(T) = 4.1987
	I(T;Y)/I(X;Y) = 0.1468
	H(T)/H(X) = 0.2956
Homogeneity: 0.616
Completeness: 0.633
V-measure: 0.624
Adjusted Rand-Index: 0.507

See the Examples directory for more illustrations and a comparison against K-Means.

License

Copyright IBM Corporation 2020

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

If you would like to see the detailed LICENSE click here.

Authors

If you have any questions or issues you can create a new issue here.

Reference

N. Slonim, N. Friedman, and N. Tishby (2002). Unsupervised Document Classification using Sequential Information Maximization. SIGIR 2002. https://dl.acm.org/doi/abs/10.1145/564376.564401

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sib-clustering-0.0.1.tar.gz (137.7 kB view details)

Uploaded Source

Built Distributions

sib_clustering-0.0.1-cp38-cp38-win_amd64.whl (205.6 kB view details)

Uploaded CPython 3.8 Windows x86-64

sib_clustering-0.0.1-cp38-cp38-win32.whl (192.1 kB view details)

Uploaded CPython 3.8 Windows x86

sib_clustering-0.0.1-cp38-cp38-manylinux2010_x86_64.whl (545.4 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

sib_clustering-0.0.1-cp38-cp38-manylinux2010_i686.whl (518.9 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

sib_clustering-0.0.1-cp38-cp38-manylinux1_x86_64.whl (545.4 kB view details)

Uploaded CPython 3.8

sib_clustering-0.0.1-cp38-cp38-manylinux1_i686.whl (518.9 kB view details)

Uploaded CPython 3.8

sib_clustering-0.0.1-cp38-cp38-macosx_10_9_x86_64.whl (207.6 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

sib_clustering-0.0.1-cp37-cp37m-win_amd64.whl (204.0 kB view details)

Uploaded CPython 3.7m Windows x86-64

sib_clustering-0.0.1-cp37-cp37m-win32.whl (190.6 kB view details)

Uploaded CPython 3.7m Windows x86

sib_clustering-0.0.1-cp37-cp37m-manylinux2010_x86_64.whl (514.2 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

sib_clustering-0.0.1-cp37-cp37m-manylinux2010_i686.whl (487.2 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

sib_clustering-0.0.1-cp37-cp37m-manylinux1_x86_64.whl (514.2 kB view details)

Uploaded CPython 3.7m

sib_clustering-0.0.1-cp37-cp37m-manylinux1_i686.whl (487.2 kB view details)

Uploaded CPython 3.7m

sib_clustering-0.0.1-cp37-cp37m-macosx_10_9_x86_64.whl (207.5 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

sib_clustering-0.0.1-cp36-cp36m-win_amd64.whl (203.9 kB view details)

Uploaded CPython 3.6m Windows x86-64

sib_clustering-0.0.1-cp36-cp36m-win32.whl (190.5 kB view details)

Uploaded CPython 3.6m Windows x86

sib_clustering-0.0.1-cp36-cp36m-manylinux2010_x86_64.whl (512.9 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

sib_clustering-0.0.1-cp36-cp36m-manylinux2010_i686.whl (487.6 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

sib_clustering-0.0.1-cp36-cp36m-manylinux1_x86_64.whl (512.9 kB view details)

Uploaded CPython 3.6m

sib_clustering-0.0.1-cp36-cp36m-manylinux1_i686.whl (487.6 kB view details)

Uploaded CPython 3.6m

sib_clustering-0.0.1-cp36-cp36m-macosx_10_9_x86_64.whl (207.3 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file sib-clustering-0.0.1.tar.gz.

File metadata

  • Download URL: sib-clustering-0.0.1.tar.gz
  • Upload date:
  • Size: 137.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.8.6

File hashes

Hashes for sib-clustering-0.0.1.tar.gz
Algorithm Hash digest
SHA256 314cb9b3295631d299d76f4bc797e70661143c29c4dc119c977b698ccbb53f98
MD5 a6d319635617af9352e5fa40fc4482ec
BLAKE2b-256 e865ed268153dedeafca1dfa775728061f4215379de4809c37f0ea2d8f4c06a0

See more details on using hashes here.

File details

Details for the file sib_clustering-0.0.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: sib_clustering-0.0.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 205.6 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.0.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 98d319757f786180f6166cd2eba02847bed13631728fcd88dcc696f949d65547
MD5 ed3c77b830de1a8fdc73469d4336ef4f
BLAKE2b-256 c791e9161609038679701af85866dc44fa89a386f071fd781b819c1766455244

See more details on using hashes here.

File details

Details for the file sib_clustering-0.0.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: sib_clustering-0.0.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 192.1 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.0.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 8767e40d9d144a5f19c7b44b81ac7cf8a6c18eed896572e4964884af7a702818
MD5 39b4f0a04a5531cf873a8df799735197
BLAKE2b-256 de2e8c66d33af93e13181cf9957fe46ddbf91ca9a975ddd2ab85b75a13f0dfb4

See more details on using hashes here.

File details

Details for the file sib_clustering-0.0.1-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: sib_clustering-0.0.1-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 545.4 kB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.0.1-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a61469caa465522bca002bcf910226500000e37f8a0f8808a76f4a0a31c858df
MD5 7873d1ddd6d39741e8bdc7a15f58f1ba
BLAKE2b-256 f40b4b01bcf2219a907d0a3841cc26a87b37e078fc52bf6478ff60432181113b

See more details on using hashes here.

File details

Details for the file sib_clustering-0.0.1-cp38-cp38-manylinux2010_i686.whl.

File metadata

  • Download URL: sib_clustering-0.0.1-cp38-cp38-manylinux2010_i686.whl
  • Upload date:
  • Size: 518.9 kB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.0.1-cp38-cp38-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 903c75efd7566ebe28743081f256bedee7f9d1282f0a25d64275911016e9a0d1
MD5 aeb40986519b80b854e5dd447954150e
BLAKE2b-256 9791fdf5021e5a64ff4ecf406df8c17153da634d4e34a721d7f382df32ebeca5

See more details on using hashes here.

File details

Details for the file sib_clustering-0.0.1-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: sib_clustering-0.0.1-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 545.4 kB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.0.1-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 32ef4059bdd4050f9c8b8418749468975128f3c81afa65e6b86725619ae8bfb2
MD5 84c10291ba49fcd3c0d01ffe61b0779f
BLAKE2b-256 1d6f943e86b779f216b7376dba15d948c8a7984e1b33121d722ac7074838db2e

See more details on using hashes here.

File details

Details for the file sib_clustering-0.0.1-cp38-cp38-manylinux1_i686.whl.

File metadata

  • Download URL: sib_clustering-0.0.1-cp38-cp38-manylinux1_i686.whl
  • Upload date:
  • Size: 518.9 kB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.0.1-cp38-cp38-manylinux1_i686.whl
Algorithm Hash digest
SHA256 25eefa275ffff8a57ad49e99b1205c34b5701b83a7701ee525b2379739d16a16
MD5 2ea3c19d815f37b12776cb52e9dd9840
BLAKE2b-256 681293b1d37a739d4456a3df53e5a38729c8670eecbd157d7f3153d3c1414adb

See more details on using hashes here.

File details

Details for the file sib_clustering-0.0.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: sib_clustering-0.0.1-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 207.6 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.0.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 45164384e411524bb96c4182591933126923638cc1d3e90c229eb54f0bad3280
MD5 9520fabdff49972d4861fbde308b9a38
BLAKE2b-256 a459d7df7d2070a911cc9636b9bf450177a9cb3d7e5320a3003e6c6a90cd0bec

See more details on using hashes here.

File details

Details for the file sib_clustering-0.0.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: sib_clustering-0.0.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 204.0 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.0.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 dd3d326def955c31356fb0191dd4d04ae298c63734af637e3f735ffa2f750b03
MD5 52d2a7fb51f82adb8649b9e838051fe1
BLAKE2b-256 92d05c78a11da5478fef103c0ac002f60cd57e33831afc50bf08b6da58ea8799

See more details on using hashes here.

File details

Details for the file sib_clustering-0.0.1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: sib_clustering-0.0.1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 190.6 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.0.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 7886b2dad0a19d477e087844b20d831fe1eba193e76b738417d37dc6573f0394
MD5 78122b202ebbab25fda300071cccdc14
BLAKE2b-256 29ac73f5ac523038a35bfd14748ce337ae678635ab8d071563caabf01f7f9f87

See more details on using hashes here.

File details

Details for the file sib_clustering-0.0.1-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: sib_clustering-0.0.1-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 514.2 kB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.0.1-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 eaa5331742820824a6ac697a0bbd2f84ed0652871a5e88afee11254e75f8abc2
MD5 29ed3c5449a97079bf42d6fbdf4912c9
BLAKE2b-256 3a299057ce85e1ba9fff13f73e278918bf12718237fcf9798c9cdfb0f0848c73

See more details on using hashes here.

File details

Details for the file sib_clustering-0.0.1-cp37-cp37m-manylinux2010_i686.whl.

File metadata

  • Download URL: sib_clustering-0.0.1-cp37-cp37m-manylinux2010_i686.whl
  • Upload date:
  • Size: 487.2 kB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.0.1-cp37-cp37m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 42d9f5d5e744385f0f850d06219209e0e051f1098b21f4d8b5ef461d812521af
MD5 9a5540b2cf56fc9095ff0d1aed2c15e3
BLAKE2b-256 9ed8be9c085f859a0dba5834772af16281af5e085712db3288f00c2a5eb46880

See more details on using hashes here.

File details

Details for the file sib_clustering-0.0.1-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: sib_clustering-0.0.1-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 514.2 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.0.1-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 278f2e74d0470a6ee4f67e7d1c64e8ae41c935542ea3ed24ec280c4b06692329
MD5 630cef7c668d85719b2131109289f2d4
BLAKE2b-256 2b0c4419ae3432093b23688f2c9fe7ca634f6c0540ea85ed1f2d47d05788931d

See more details on using hashes here.

File details

Details for the file sib_clustering-0.0.1-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: sib_clustering-0.0.1-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 487.2 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.0.1-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 9218f34ce56264bd305ddb09a561ac17b495ccc4a879185825d7c8634c51bcbf
MD5 c1732ba652e34b9a36515d271061e27b
BLAKE2b-256 157cbab8504dc8da6fdd536723c06d25911a5fc4aea8daa17d31dd208bd7df35

See more details on using hashes here.

File details

Details for the file sib_clustering-0.0.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: sib_clustering-0.0.1-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 207.5 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.0.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 060fe612faba85d1682cc6a95298c19f826f35398d87e6ccd6522fe4e60608f3
MD5 36c68d059962a0675431176a0ece80bf
BLAKE2b-256 a9443900f307f03b3f318c0e5a92bb501cfba33b45467b14cf87fa5034eb0fce

See more details on using hashes here.

File details

Details for the file sib_clustering-0.0.1-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: sib_clustering-0.0.1-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 203.9 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.0.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 cc4cf1cc975aab6699a6fe9e6ef52f62b724701c9233041319db35c818257d3d
MD5 6c63d4814db2b8352557a8d60b00f443
BLAKE2b-256 7d995beb8b5781b2173f37d0a9ff8cad16461349e08f203787303012f8d3825d

See more details on using hashes here.

File details

Details for the file sib_clustering-0.0.1-cp36-cp36m-win32.whl.

File metadata

  • Download URL: sib_clustering-0.0.1-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 190.5 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.0.1-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 031f946f61636e45e2857d4374c9f5b0d16c96e465315bfc0b685e8a37679aaa
MD5 a1825bb752095a3723f45619d59213d9
BLAKE2b-256 6f3d6098458353ec060aa3d0d645fc7e1f0dfb7f134c1313e28d0cf1762d2f16

See more details on using hashes here.

File details

Details for the file sib_clustering-0.0.1-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: sib_clustering-0.0.1-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 512.9 kB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.0.1-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 1f73d5244a6b67134feb192b0c2398791a9621a102b7abb4349f897212221dcf
MD5 135e8816c48c4f4eb688422fe084abdc
BLAKE2b-256 7236629018edf8ff76261544c920d658e9b7309e1b3b2104e18b326e37faeb06

See more details on using hashes here.

File details

Details for the file sib_clustering-0.0.1-cp36-cp36m-manylinux2010_i686.whl.

File metadata

  • Download URL: sib_clustering-0.0.1-cp36-cp36m-manylinux2010_i686.whl
  • Upload date:
  • Size: 487.6 kB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.0.1-cp36-cp36m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 7940c1f3d8fb4536111414cbef42bdc525edd601e6d62fa81bf9cb28ebcaad75
MD5 2db1d5fe5c527d4f26a5651837a6fae1
BLAKE2b-256 b7b7fb84709598de1e77d2b94e07a08ac86298cc41370d7cbd7bb783f53c673f

See more details on using hashes here.

File details

Details for the file sib_clustering-0.0.1-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: sib_clustering-0.0.1-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 512.9 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.0.1-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 086c4d68e49e437ea9035168d510195e1933ca29a8a9ed89dbf43e48ff1b8780
MD5 1e7a0fc30948744ea6d4b34f22d391ee
BLAKE2b-256 1a6221146d94131d7a53755c4bf8cbeeaa90a4b9760fea306409dbf20eb50f2a

See more details on using hashes here.

File details

Details for the file sib_clustering-0.0.1-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: sib_clustering-0.0.1-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 487.6 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.0.1-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 bd46676c62780ea8d021a070b7b30aba8647907b2fe0ad668600e10aeae2cd99
MD5 c9ecb210fa573f98ccc93d812f24dfb4
BLAKE2b-256 1e6906e405b6e2784d88f596891c2cd7ffbc957e0980567959b8e812489afb10

See more details on using hashes here.

File details

Details for the file sib_clustering-0.0.1-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: sib_clustering-0.0.1-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 207.3 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.0.1-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 93ac11c5e5dd019a834d53ae934b71756e2def644793d40d0d8ffec2dae5fdd5
MD5 87c9701123cca0ee81ecad3177df58e6
BLAKE2b-256 3add4d4efcd96b941346a205b6580e61f384830ba46be13f0c0daf669e09d415

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page