Skip to main content

sequential Information Bottleneck

Project description

sequential Information Bottleneck (sIB)

GitHub Actions CI status

Scope

This project provides an efficient implementation of the text clustering algorithm "sequential Information Bottleneck" (sIB), introduced by Slonim, Friedman and Tishby (2002). The project is packaged as a python library with a cython-wrapped C++ extension for the partition optimization code. A pure python implementation is included as well. The implementation is documented here.

Installation

pip install sib-clustering

Usage

The main class in this library is SIB, which implements the clustering interface of SciKit Learn, providing methods such as fit(), fit_transform(), fit_predict(), etc.

The sample code below clusters the 18.8K documents of the 20-News-Groups dataset into 20 clusters:

import numpy as np
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.datasets import fetch_20newsgroups
from sklearn import metrics
from sib import SIB

# read the dataset
dataset = fetch_20newsgroups(subset='all', categories=None,
                             shuffle=True, random_state=256)

gold_labels = dataset.target
n_clusters = np.unique(gold_labels).shape[0]

# create count vectors using the 10K most frequent words
vectorizer = CountVectorizer(max_features=10000)
X = vectorizer.fit_transform(dataset.data)

# SIB initialization and clustering; parameters:
# perform 10 random initializations (n_init=10); the best one is returned.
# up to 15 optimization iterations in each initialization (max_iter=15)
# use all cores in the running machine for parallel execution (n_jobs=-1)
sib = SIB(n_clusters=n_clusters, random_state=128, n_init=10,
          n_jobs=-1, max_iter=15, verbose=True)
sib.fit(X)

# report standard clustering metrics
print("Homogeneity: %0.3f" % metrics.homogeneity_score(gold_labels, sib.labels_))
print("Completeness: %0.3f" % metrics.completeness_score(gold_labels, sib.labels_))
print("V-measure: %0.3f" % metrics.v_measure_score(gold_labels, sib.labels_))
print("Adjusted Rand-Index: %.3f" % metrics.adjusted_rand_score(gold_labels, sib.labels_))

Expected result:

sIB information stats on best partition:
	I(T;Y) = 0.5685, H(T) = 4.1987
	I(T;Y)/I(X;Y) = 0.1468
	H(T)/H(X) = 0.2956
Homogeneity: 0.616
Completeness: 0.633
V-measure: 0.624
Adjusted Rand-Index: 0.507

See the Examples directory for more illustrations and a comparison against K-Means.

License

Copyright IBM Corporation 2020

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

If you would like to see the detailed LICENSE click here.

Authors

If you have any questions or issues you can create a new issue here.

Reference

N. Slonim, N. Friedman, and N. Tishby (2002). Unsupervised Document Classification using Sequential Information Maximization. SIGIR 2002. https://dl.acm.org/doi/abs/10.1145/564376.564401

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sib-clustering-0.0.2.tar.gz (137.8 kB view details)

Uploaded Source

Built Distributions

sib_clustering-0.0.2-cp38-cp38-win_amd64.whl (205.7 kB view details)

Uploaded CPython 3.8 Windows x86-64

sib_clustering-0.0.2-cp38-cp38-win32.whl (192.2 kB view details)

Uploaded CPython 3.8 Windows x86

sib_clustering-0.0.2-cp38-cp38-manylinux2010_x86_64.whl (545.5 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

sib_clustering-0.0.2-cp38-cp38-manylinux2010_i686.whl (518.9 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

sib_clustering-0.0.2-cp38-cp38-manylinux1_x86_64.whl (545.5 kB view details)

Uploaded CPython 3.8

sib_clustering-0.0.2-cp38-cp38-manylinux1_i686.whl (518.9 kB view details)

Uploaded CPython 3.8

sib_clustering-0.0.2-cp38-cp38-macosx_10_9_x86_64.whl (207.6 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

sib_clustering-0.0.2-cp37-cp37m-win_amd64.whl (204.1 kB view details)

Uploaded CPython 3.7m Windows x86-64

sib_clustering-0.0.2-cp37-cp37m-win32.whl (190.6 kB view details)

Uploaded CPython 3.7m Windows x86

sib_clustering-0.0.2-cp37-cp37m-manylinux2010_x86_64.whl (514.3 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

sib_clustering-0.0.2-cp37-cp37m-manylinux2010_i686.whl (487.2 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

sib_clustering-0.0.2-cp37-cp37m-manylinux1_x86_64.whl (514.3 kB view details)

Uploaded CPython 3.7m

sib_clustering-0.0.2-cp37-cp37m-manylinux1_i686.whl (487.2 kB view details)

Uploaded CPython 3.7m

sib_clustering-0.0.2-cp37-cp37m-macosx_10_9_x86_64.whl (207.5 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

sib_clustering-0.0.2-cp36-cp36m-win_amd64.whl (204.0 kB view details)

Uploaded CPython 3.6m Windows x86-64

sib_clustering-0.0.2-cp36-cp36m-win32.whl (190.6 kB view details)

Uploaded CPython 3.6m Windows x86

sib_clustering-0.0.2-cp36-cp36m-manylinux2010_x86_64.whl (513.0 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

sib_clustering-0.0.2-cp36-cp36m-manylinux2010_i686.whl (487.6 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

sib_clustering-0.0.2-cp36-cp36m-manylinux1_x86_64.whl (513.0 kB view details)

Uploaded CPython 3.6m

sib_clustering-0.0.2-cp36-cp36m-manylinux1_i686.whl (487.6 kB view details)

Uploaded CPython 3.6m

sib_clustering-0.0.2-cp36-cp36m-macosx_10_9_x86_64.whl (207.4 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file sib-clustering-0.0.2.tar.gz.

File metadata

  • Download URL: sib-clustering-0.0.2.tar.gz
  • Upload date:
  • Size: 137.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.8.6

File hashes

Hashes for sib-clustering-0.0.2.tar.gz
Algorithm Hash digest
SHA256 2d16db93dd83c39c53d088d647cd46e701d1b8fbd444f7aaab1f8ac5984092ea
MD5 7f92d0c9d51e361f5b093375015e2ccb
BLAKE2b-256 bed3d0eb379ef3215d095acf22139ddb761b39e6328c786dcc1898e9943aa0a6

See more details on using hashes here.

File details

Details for the file sib_clustering-0.0.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: sib_clustering-0.0.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 205.7 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.0.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 3c44e25b5b61477d28adf85854db39ef1a031e207090aabeeb5ad0cf2da67d65
MD5 cb6e4b2b137e5d86567baf4b8421b977
BLAKE2b-256 c156b6ff7568314dd2b73dd3ac90fafb5c10b695d2316a6618e839d66b20af14

See more details on using hashes here.

File details

Details for the file sib_clustering-0.0.2-cp38-cp38-win32.whl.

File metadata

  • Download URL: sib_clustering-0.0.2-cp38-cp38-win32.whl
  • Upload date:
  • Size: 192.2 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.0.2-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 b77a7a84dd0b5a8a150022f4701b6875da32778ede4ad7a0c0fea3f56f9d40cb
MD5 7e7d6d05eaa84bc8df993879cb06e13f
BLAKE2b-256 6212b8a570daed84a98c49ea6afdafaa8bf935e714a9288e17fe063dbf782850

See more details on using hashes here.

File details

Details for the file sib_clustering-0.0.2-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: sib_clustering-0.0.2-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 545.5 kB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.0.2-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7feab7ef459909a77b61392352a50dd08e97befa2b7ed0eaafba017dac6681ec
MD5 8b6f966b9b83b0c5cf5b6bc5e6f9a151
BLAKE2b-256 e0882b271128aec3318d572037e3ed6db796f7d466c03edf18dac871e52a6448

See more details on using hashes here.

File details

Details for the file sib_clustering-0.0.2-cp38-cp38-manylinux2010_i686.whl.

File metadata

  • Download URL: sib_clustering-0.0.2-cp38-cp38-manylinux2010_i686.whl
  • Upload date:
  • Size: 518.9 kB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.0.2-cp38-cp38-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 ebe2799b87ecc842a4352d24fe52bf460289057260761357508854c055523d82
MD5 1662da7100207546a498a26c3a5910f7
BLAKE2b-256 564354233330a564720d0878cda8c9b22fbc59b4afc7d66d4d63c003398e5ab6

See more details on using hashes here.

File details

Details for the file sib_clustering-0.0.2-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: sib_clustering-0.0.2-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 545.5 kB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.0.2-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 26445a002375f497c2cd1a85695bc6e86b8214976d4ec299510eae82d0071057
MD5 c564a78bb60e750c0ff1b586747c9164
BLAKE2b-256 b8e6a8cd56f958ee639cfd37b44888a8359899c5c5728c14b033725a61e1bc99

See more details on using hashes here.

File details

Details for the file sib_clustering-0.0.2-cp38-cp38-manylinux1_i686.whl.

File metadata

  • Download URL: sib_clustering-0.0.2-cp38-cp38-manylinux1_i686.whl
  • Upload date:
  • Size: 518.9 kB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.0.2-cp38-cp38-manylinux1_i686.whl
Algorithm Hash digest
SHA256 5004adb6fe3b780de51ed08585af76136f0925114ffb1045e1edb3c2cd9b3c23
MD5 b71a1b2b143681d4f52bcfb9f2b3cc1b
BLAKE2b-256 9a75eae07230edca3223ffe7d58c35c1635aa4264b88ec6fe93d1dd1f8c4adb3

See more details on using hashes here.

File details

Details for the file sib_clustering-0.0.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: sib_clustering-0.0.2-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 207.6 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.0.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 325bc6247a37cb6f12f7293077fa038bd3c837e83011188e0f06fdbfb31cda0d
MD5 75b4a2bbad492e0b57814a589411f7a1
BLAKE2b-256 814def530f60f39bb18c4197ccdd7f88add77c4bc43efbce6b820a11fa69e195

See more details on using hashes here.

File details

Details for the file sib_clustering-0.0.2-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: sib_clustering-0.0.2-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 204.1 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.0.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 58b2b14a86f9b709f4d6c9057c8909149f9844494ba59c5d21b726b318cc7556
MD5 247ccbfd11f62b3f8460253e464d945f
BLAKE2b-256 d30eed35426b1f54cc953cb37156aeb00f7de2ea114569492718154b71e9e0c4

See more details on using hashes here.

File details

Details for the file sib_clustering-0.0.2-cp37-cp37m-win32.whl.

File metadata

  • Download URL: sib_clustering-0.0.2-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 190.6 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.0.2-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 25ed6aeb9c033c8a22c471ad7b83df6a368d433ef821784a1521dc6a39ade240
MD5 1836bbf6c7f0acee083b1cc57845c203
BLAKE2b-256 9cae2468d1d3d18d77aaf52c8573c2ee9dd5f19fb0277f1e3addceb5ccc91f43

See more details on using hashes here.

File details

Details for the file sib_clustering-0.0.2-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: sib_clustering-0.0.2-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 514.3 kB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.0.2-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 da49cd514f5b31c0b3869d504c1f50c7c32505323024a07916b04d05b31a0b85
MD5 43b67fe22a50e8fa76ecfb64a448d5ce
BLAKE2b-256 67ac507115b2dc76a8dc8cdcf9d3d19cf6224b9dd146b06b79d16e11cdae0ae5

See more details on using hashes here.

File details

Details for the file sib_clustering-0.0.2-cp37-cp37m-manylinux2010_i686.whl.

File metadata

  • Download URL: sib_clustering-0.0.2-cp37-cp37m-manylinux2010_i686.whl
  • Upload date:
  • Size: 487.2 kB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.0.2-cp37-cp37m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 f6222b262ef01625941af43fafb3d220c8b7e46435fd7e20d77d38bf37f081c4
MD5 d7c343cf3bdcf624d98b4fba66905304
BLAKE2b-256 098b665fa252f68fa31d23baa3c843c21d5d9acabf3db2ea3db847306d5c7a78

See more details on using hashes here.

File details

Details for the file sib_clustering-0.0.2-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: sib_clustering-0.0.2-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 514.3 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.0.2-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 fd708a3216917223c929cfadd5997077355862623fc655432274b880e2d61a7f
MD5 a21cd0a261ef136058cedbd88d1213dc
BLAKE2b-256 d8f8f8914422159ab715fb610c087e3b94d78600c956febc7a038bb1e636f7fe

See more details on using hashes here.

File details

Details for the file sib_clustering-0.0.2-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: sib_clustering-0.0.2-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 487.2 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.0.2-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 ec6d453e0ad3f55e45d350537dc6cf819d682eb74eaa13f4520fdea18f2f0954
MD5 13878e4c3bd51f91a5a7cbeb2bde91f0
BLAKE2b-256 10c030c0aa3a368a3033cd5aa08ffb27cb7323f4433cbc534df95d3893665989

See more details on using hashes here.

File details

Details for the file sib_clustering-0.0.2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: sib_clustering-0.0.2-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 207.5 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.0.2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ae3f856623f4592565efaa1a43e9312ef6bbed4620a6d8a626f37d1d9a827cf8
MD5 c18e5f3e5df00ad9b1369b392c163f84
BLAKE2b-256 6e580b2ce0c49ea9a8e6032ddd565f470a5552940012d14c4d1955a0814318cb

See more details on using hashes here.

File details

Details for the file sib_clustering-0.0.2-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: sib_clustering-0.0.2-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 204.0 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.0.2-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 5f90bf3290854cd96a8f15ab14c7364ec01e709818d5c1adad5992860b8f6c5e
MD5 890b50db8903471327008dd178599226
BLAKE2b-256 b6df968885f7579fe25471044463bcc041f509a81ba798a07f8d3aa0d98bbc90

See more details on using hashes here.

File details

Details for the file sib_clustering-0.0.2-cp36-cp36m-win32.whl.

File metadata

  • Download URL: sib_clustering-0.0.2-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 190.6 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.0.2-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 d03c9e95b1c5270cb36ed50bd4159e164db42942d0d02b354e660aea8d4e77f2
MD5 a19fe93d774de8a263475e727118508b
BLAKE2b-256 a7f776f8ff412dd6e02a832840fce94e8e1a76a8169e784ef21ee5720ca94c16

See more details on using hashes here.

File details

Details for the file sib_clustering-0.0.2-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: sib_clustering-0.0.2-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 513.0 kB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.0.2-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 42a579344be846122622066af3c0f23b2838be7649d6487a620f20b034f78258
MD5 4667ab9631442ccba3d360716443a6e7
BLAKE2b-256 66653b927445d27acddaf003b610a8b86442370d5d03ca6fc7a52f3ef60711fa

See more details on using hashes here.

File details

Details for the file sib_clustering-0.0.2-cp36-cp36m-manylinux2010_i686.whl.

File metadata

  • Download URL: sib_clustering-0.0.2-cp36-cp36m-manylinux2010_i686.whl
  • Upload date:
  • Size: 487.6 kB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.0.2-cp36-cp36m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 1128222fb0c8eed78a11528dc44566026d0fbe956d057b86e403f89fb011f224
MD5 116650ede82993bd6ac7875799ac18d2
BLAKE2b-256 4fa8541b26bcc5e85d55d9bad67c4fd9a1ba7fe39f564b9bb9fca05e1c6babf3

See more details on using hashes here.

File details

Details for the file sib_clustering-0.0.2-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: sib_clustering-0.0.2-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 513.0 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.0.2-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 e977e4841d19f41813965d7995dc6d6c0983128a627a201d5046a2582a54a999
MD5 43cff1dd9e16b5348bee0151d666a5d4
BLAKE2b-256 a52aa52e27db5c9ae2d89e5f25ab6b4d7b46201e4b1de917c1dbc13bde8d552e

See more details on using hashes here.

File details

Details for the file sib_clustering-0.0.2-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: sib_clustering-0.0.2-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 487.6 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.0.2-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 ad05efd3be5cfd04a50082242c674999e7fc1ebc36ded277d3492cae92054ffe
MD5 ae17f1e8f9dbc4577d2e2c7b2bcffc3a
BLAKE2b-256 3f76df2cf0559d34278ac0124365306fcd5d2f5f625225973f614f5b0f6e5988

See more details on using hashes here.

File details

Details for the file sib_clustering-0.0.2-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: sib_clustering-0.0.2-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 207.4 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.0.2-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a8ffb253515554ea1134b54581d96fd59aed659076d4631cca2e2fbd0553f328
MD5 3d944157af83c30a8903bdd1586872d6
BLAKE2b-256 4f256b4d64892f97d812b169cce74de206f754e7ee8b02a81cfc7849e8d1c88b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page