Skip to main content

sequential Information Bottleneck

Project description

sequential Information Bottleneck (sIB)

GitHub Actions CI status

Scope

This project provides an efficient implementation of the text clustering algorithm "sequential Information Bottleneck" (sIB), introduced by Slonim, Friedman and Tishby (2002). The project is packaged as a python library with a cython-wrapped C++ extension for the partition optimization code. A pure python implementation is included as well. The implementation is documented here.

Installation

pip install sib-clustering

Usage

The main class in this library is SIB, which implements the clustering interface of SciKit Learn, providing methods such as fit(), fit_transform(), fit_predict(), etc.

The sample code below clusters the 18.8K documents of the 20-News-Groups dataset into 20 clusters:

import numpy as np
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.datasets import fetch_20newsgroups
from sklearn import metrics
from sib import SIB

# read the dataset
dataset = fetch_20newsgroups(subset='all', categories=None,
                             shuffle=True, random_state=256)

gold_labels = dataset.target
n_clusters = np.unique(gold_labels).shape[0]

# create count vectors using the 10K most frequent words
vectorizer = CountVectorizer(max_features=10000)
X = vectorizer.fit_transform(dataset.data)

# SIB initialization and clustering; parameters:
# perform 10 random initializations (n_init=10); the best one is returned.
# up to 15 optimization iterations in each initialization (max_iter=15)
# use all cores in the running machine for parallel execution (n_jobs=-1)
sib = SIB(n_clusters=n_clusters, random_state=128, n_init=10,
          n_jobs=-1, max_iter=15, verbose=True)
sib.fit(X)

# report standard clustering metrics
print("Homogeneity: %0.3f" % metrics.homogeneity_score(gold_labels, sib.labels_))
print("Completeness: %0.3f" % metrics.completeness_score(gold_labels, sib.labels_))
print("V-measure: %0.3f" % metrics.v_measure_score(gold_labels, sib.labels_))
print("Adjusted Rand-Index: %.3f" % metrics.adjusted_rand_score(gold_labels, sib.labels_))

Expected result:

sIB information stats on best partition:
	I(T;Y) = 0.5685, H(T) = 4.1987
	I(T;Y)/I(X;Y) = 0.1468
	H(T)/H(X) = 0.2956
Homogeneity: 0.616
Completeness: 0.633
V-measure: 0.624
Adjusted Rand-Index: 0.507

See the Examples directory for more illustrations and a comparison against K-Means.

License

Copyright IBM Corporation 2020

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

If you would like to see the detailed LICENSE click here.

Authors

If you have any questions or issues you can create a new issue here.

Reference

N. Slonim, N. Friedman, and N. Tishby (2002). Unsupervised Document Classification using Sequential Information Maximization. SIGIR 2002. https://dl.acm.org/doi/abs/10.1145/564376.564401

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sib-clustering-0.0.3.tar.gz (137.9 kB view details)

Uploaded Source

Built Distributions

sib_clustering-0.0.3-cp38-cp38-win_amd64.whl (205.7 kB view details)

Uploaded CPython 3.8 Windows x86-64

sib_clustering-0.0.3-cp38-cp38-win32.whl (192.2 kB view details)

Uploaded CPython 3.8 Windows x86

sib_clustering-0.0.3-cp38-cp38-manylinux2010_x86_64.whl (545.6 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

sib_clustering-0.0.3-cp38-cp38-manylinux2010_i686.whl (519.0 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

sib_clustering-0.0.3-cp38-cp38-manylinux1_x86_64.whl (545.5 kB view details)

Uploaded CPython 3.8

sib_clustering-0.0.3-cp38-cp38-manylinux1_i686.whl (519.0 kB view details)

Uploaded CPython 3.8

sib_clustering-0.0.3-cp38-cp38-macosx_10_9_x86_64.whl (207.7 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

sib_clustering-0.0.3-cp37-cp37m-win_amd64.whl (204.1 kB view details)

Uploaded CPython 3.7m Windows x86-64

sib_clustering-0.0.3-cp37-cp37m-win32.whl (190.7 kB view details)

Uploaded CPython 3.7m Windows x86

sib_clustering-0.0.3-cp37-cp37m-manylinux2010_x86_64.whl (514.3 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

sib_clustering-0.0.3-cp37-cp37m-manylinux2010_i686.whl (487.3 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

sib_clustering-0.0.3-cp37-cp37m-manylinux1_x86_64.whl (514.3 kB view details)

Uploaded CPython 3.7m

sib_clustering-0.0.3-cp37-cp37m-manylinux1_i686.whl (487.3 kB view details)

Uploaded CPython 3.7m

sib_clustering-0.0.3-cp37-cp37m-macosx_10_9_x86_64.whl (207.6 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

sib_clustering-0.0.3-cp36-cp36m-win_amd64.whl (204.1 kB view details)

Uploaded CPython 3.6m Windows x86-64

sib_clustering-0.0.3-cp36-cp36m-win32.whl (190.6 kB view details)

Uploaded CPython 3.6m Windows x86

sib_clustering-0.0.3-cp36-cp36m-manylinux2010_x86_64.whl (513.0 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

sib_clustering-0.0.3-cp36-cp36m-manylinux2010_i686.whl (487.7 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

sib_clustering-0.0.3-cp36-cp36m-manylinux1_x86_64.whl (513.0 kB view details)

Uploaded CPython 3.6m

sib_clustering-0.0.3-cp36-cp36m-manylinux1_i686.whl (487.7 kB view details)

Uploaded CPython 3.6m

sib_clustering-0.0.3-cp36-cp36m-macosx_10_9_x86_64.whl (207.5 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file sib-clustering-0.0.3.tar.gz.

File metadata

  • Download URL: sib-clustering-0.0.3.tar.gz
  • Upload date:
  • Size: 137.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.8.6

File hashes

Hashes for sib-clustering-0.0.3.tar.gz
Algorithm Hash digest
SHA256 bc6b4e204e166d5af21bc7dd57bc2f099d26670fabc7d7c85e8f6dd05f199269
MD5 1117f592c5032caa0510b2555bd801bd
BLAKE2b-256 e11f081e26811c0dc3bba26d71e7425b81894259d35f2484d774bb8247829f98

See more details on using hashes here.

File details

Details for the file sib_clustering-0.0.3-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: sib_clustering-0.0.3-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 205.7 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.0.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 9c4973cc1ba208cddcc753ddfc48e5f3c8e12bee54708da6e2bbc7eb7bb31328
MD5 1e660166ea5356c039a89ab0dff11b64
BLAKE2b-256 151140e397ea687c93398e3abdc98e7911f7bd36da0dc1925308ba5cb60bc4cd

See more details on using hashes here.

File details

Details for the file sib_clustering-0.0.3-cp38-cp38-win32.whl.

File metadata

  • Download URL: sib_clustering-0.0.3-cp38-cp38-win32.whl
  • Upload date:
  • Size: 192.2 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.0.3-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 4cd5b035fdbede5b99e5af7956c2087f56e9de79ebd2962b48185b99b6f7ea6f
MD5 185d52c326f8c49f88bf257599827877
BLAKE2b-256 4a465e2cd1f0a2521a4ac0ae40bbaf8db351680a4f12d0a8af6d4ddc02392d62

See more details on using hashes here.

File details

Details for the file sib_clustering-0.0.3-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: sib_clustering-0.0.3-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 545.6 kB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.0.3-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 9cb7b89516ca8a00368f9f08ee3104629de7c6ebf5f8662077b00ffc3044f972
MD5 f54aaaee7803419d96aece8ea84b3eba
BLAKE2b-256 b73bf90f16810f6d8ec953dd0933c81fd6a92ea05410ae6ae5da61657b0fd8fd

See more details on using hashes here.

File details

Details for the file sib_clustering-0.0.3-cp38-cp38-manylinux2010_i686.whl.

File metadata

  • Download URL: sib_clustering-0.0.3-cp38-cp38-manylinux2010_i686.whl
  • Upload date:
  • Size: 519.0 kB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.0.3-cp38-cp38-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 7c9fef9249843d9c79d28dbe1fd93972b7bcae6492cd47566cd50ad6eae985e2
MD5 9ad3e901e4c730e85e429ec1f1cd46a7
BLAKE2b-256 2e99f45f7468567415cdde8a27b87a158dbea4a18da5c99a14989315de35ab78

See more details on using hashes here.

File details

Details for the file sib_clustering-0.0.3-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: sib_clustering-0.0.3-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 545.5 kB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.0.3-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 c2725566ce9388fd6f90da54c27ae580471b725cf9c6e60cf0347d12f33e8b81
MD5 37dcea7282479ff39e7935c05e5ad1bf
BLAKE2b-256 f62abe3e50c1198d9adb3ef54e4f5672a1a2b85293515b3b081cdfcf79d740d3

See more details on using hashes here.

File details

Details for the file sib_clustering-0.0.3-cp38-cp38-manylinux1_i686.whl.

File metadata

  • Download URL: sib_clustering-0.0.3-cp38-cp38-manylinux1_i686.whl
  • Upload date:
  • Size: 519.0 kB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.0.3-cp38-cp38-manylinux1_i686.whl
Algorithm Hash digest
SHA256 b886fc3cbab1f74e8f9f37d821ab4fa3f52e3c6c8e997b0f24e7813be84fb1a4
MD5 1e411a816f065ed25f7269d67ee4c69b
BLAKE2b-256 c986a414a68fc896bd46bd976ce519981574f3d1cd0fbaf50876078341f7c5cf

See more details on using hashes here.

File details

Details for the file sib_clustering-0.0.3-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: sib_clustering-0.0.3-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 207.7 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.0.3-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 94644eec61d1ab446e0f75ac0e5d927a9eb40543329400da275029ab55eaaeeb
MD5 47335e3d7ba0342e8bca89aee243a0d6
BLAKE2b-256 f6b9b12bd29b8256076b15da87733d0a917e7aed3b529f2f3b88d410b6bf0a24

See more details on using hashes here.

File details

Details for the file sib_clustering-0.0.3-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: sib_clustering-0.0.3-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 204.1 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.0.3-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 908fcd1bcb0881a288b1927f2ca6e15b3b2b9b44225cbe5c2c62938b0af7aaf2
MD5 ed80d01775012bed5af136005d40bdc6
BLAKE2b-256 793beb2709571bdc77ea463e4b00402f2dcf0c5be33fc962fb88d33461edaae3

See more details on using hashes here.

File details

Details for the file sib_clustering-0.0.3-cp37-cp37m-win32.whl.

File metadata

  • Download URL: sib_clustering-0.0.3-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 190.7 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.0.3-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 e8f71829a6a2308a2fe6cbb6cd5a03cf00454b3726a1726e4463e0bed6775818
MD5 7ec23239fb6de9205fe8f3094e29d62f
BLAKE2b-256 82aed8d82598e4ac096214f28d0a3adddf0ba11ca40299b0d62dddfea2010ecc

See more details on using hashes here.

File details

Details for the file sib_clustering-0.0.3-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: sib_clustering-0.0.3-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 514.3 kB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.0.3-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 b89b96f939e59ef94940f2a118bafea6b969ec29fb2c949cd112cb9904feaf7b
MD5 59489753cb880835659b5eca9e04d0bc
BLAKE2b-256 2cb0149b5f20c8b825493b282b9a61f1539a760ab9bc525fb61a6edf4161bc4a

See more details on using hashes here.

File details

Details for the file sib_clustering-0.0.3-cp37-cp37m-manylinux2010_i686.whl.

File metadata

  • Download URL: sib_clustering-0.0.3-cp37-cp37m-manylinux2010_i686.whl
  • Upload date:
  • Size: 487.3 kB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.0.3-cp37-cp37m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 c3a83bf9f15d6900f7c9662e929d5ceb4b699e10efb5219f5c50e338237d5af6
MD5 63ad8f92e530ed93c1d3e11f0c14719c
BLAKE2b-256 315d7c2e93f01c78aa09ca238452c1b64cc305582e87388a64eeac54e4716f51

See more details on using hashes here.

File details

Details for the file sib_clustering-0.0.3-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: sib_clustering-0.0.3-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 514.3 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.0.3-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 164b81b56868a2134ca4ccd1a5a6fcca29735c8ead97bacd2430e724ad40e313
MD5 761319bcc74682a62db8bf8b74147c1d
BLAKE2b-256 70c4e94ae960c0412a11431b50a3097f92bea58d767e75cc19fd8d218aa6a00b

See more details on using hashes here.

File details

Details for the file sib_clustering-0.0.3-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: sib_clustering-0.0.3-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 487.3 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.0.3-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 cb552256ca9685b2486269d8cfd0527e10d713506f20c94048c3b3e6617e998f
MD5 3e116907f5c156bad7164aab55f2c378
BLAKE2b-256 301bb63f38803ba479bbd784d5cc833669bf1085e9e15ac56af6f6a92c24d621

See more details on using hashes here.

File details

Details for the file sib_clustering-0.0.3-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: sib_clustering-0.0.3-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 207.6 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.0.3-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 391ab6957d452486e8e0b4d025bccbfa1a11b13f5d9893bb288f2f4c7c9dc9d7
MD5 1504033ce9dd42d0d3222481cf92776b
BLAKE2b-256 eeac3088ef7f25f38efa78c908c3ae4bd344b859a5be3e01d6f61aedf68f72b6

See more details on using hashes here.

File details

Details for the file sib_clustering-0.0.3-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: sib_clustering-0.0.3-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 204.1 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.0.3-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 d466949ac7e2695e2a3b6666a28490b128900d1d68d1a2da8112c0dfb2815b9a
MD5 66300a28e030c1664792c193eb221017
BLAKE2b-256 706c620a400b53c3b1f5e34ff0d13e3c8d0c275677a69ddaf930f5f5b66154fe

See more details on using hashes here.

File details

Details for the file sib_clustering-0.0.3-cp36-cp36m-win32.whl.

File metadata

  • Download URL: sib_clustering-0.0.3-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 190.6 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.0.3-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 360a7d0a5fd1697879beb812c8984f0be9479146d2c619282554c643c8aa3bf8
MD5 464f84572dc83fa19048bdcd9f739e31
BLAKE2b-256 0aa886ccc3c81d8f7040b54df8c3386983c40f401f1d0d2468d9c53c755fae4d

See more details on using hashes here.

File details

Details for the file sib_clustering-0.0.3-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: sib_clustering-0.0.3-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 513.0 kB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.0.3-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 647c09daff5eadc9dffc4ea734ebd7059ae6cae4ee134159ffcfbcd6be01a050
MD5 9a4580142a20fa38c3458d838803e849
BLAKE2b-256 64604b8466afb09dac1a69ef308b442ed706195d1dcec8118e8ed77b62d5d7bd

See more details on using hashes here.

File details

Details for the file sib_clustering-0.0.3-cp36-cp36m-manylinux2010_i686.whl.

File metadata

  • Download URL: sib_clustering-0.0.3-cp36-cp36m-manylinux2010_i686.whl
  • Upload date:
  • Size: 487.7 kB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.0.3-cp36-cp36m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 d47ea0d1f5ad71d652bf137d5c2370c24a168ca11e489ba9e8b0a29cd9905c3a
MD5 7fe58132e42f4afa7b420aba0de3d57d
BLAKE2b-256 963d10e4ea13c8f7e1e1b74a3c02b21f6e0db6560020f9c1607c779ae2c7a598

See more details on using hashes here.

File details

Details for the file sib_clustering-0.0.3-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: sib_clustering-0.0.3-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 513.0 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.0.3-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 3672afa605a6386809f994220d676fb9f51388b018a53eea314eff6be8fb0d7d
MD5 6ebf9552f494043aa9973f3c8d50da10
BLAKE2b-256 9d763778eacc72684c072b96c3fa72d5992ebe896c2154092c0098dec00d91b2

See more details on using hashes here.

File details

Details for the file sib_clustering-0.0.3-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: sib_clustering-0.0.3-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 487.7 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.0.3-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 7fb09ba6b0c2416b134f78e79d05e3375d600835c0fabfb17b15cd62da4b6de7
MD5 84f622deef5fc28c9eaed7b04430c2a9
BLAKE2b-256 791e213148aeaceff5e96cf1561997de9f1fbb55cbfce0987b968b5e6f2b2f9e

See more details on using hashes here.

File details

Details for the file sib_clustering-0.0.3-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: sib_clustering-0.0.3-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 207.5 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.0.3-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c9e14e5e7c1371d4d6f98891e472ab822a1486b720cf98b2d7adf8e8033ea2ee
MD5 bfe3f4e6d4ec1f670ed6f92379509527
BLAKE2b-256 8bd77399572856a0deed560bffac3b98c3d2d1b9cffe2f40b636b2fa3324d28d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page