Skip to main content

sequential Information Bottleneck

Project description

sequential Information Bottleneck (sIB)

GitHub Actions CI status

Scope

This project provides an efficient implementation of the text clustering algorithm "sequential Information Bottleneck" (sIB), introduced by Slonim, Friedman and Tishby (2002). The project is packaged as a python library with a cython-wrapped C++ extension for the partition optimization code. A pure python implementation is included as well. The implementation is documented here.

Installation

pip install sib-clustering

Usage

The main class in this library is SIB, which implements the clustering interface of SciKit Learn, providing methods such as fit(), fit_transform(), fit_predict(), etc.

The sample code below clusters the 18.8K documents of the 20-News-Groups dataset into 20 clusters:

import numpy as np
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.datasets import fetch_20newsgroups
from sklearn import metrics
from sib import SIB

# read the dataset
dataset = fetch_20newsgroups(subset='all', categories=None,
                             shuffle=True, random_state=256)

gold_labels = dataset.target
n_clusters = np.unique(gold_labels).shape[0]

# create count vectors using the 10K most frequent words
vectorizer = CountVectorizer(max_features=10000)
X = vectorizer.fit_transform(dataset.data)

# SIB initialization and clustering; parameters:
# perform 10 random initializations (n_init=10); the best one is returned.
# up to 15 optimization iterations in each initialization (max_iter=15)
# use all cores in the running machine for parallel execution (n_jobs=-1)
sib = SIB(n_clusters=n_clusters, random_state=128, n_init=10,
          n_jobs=-1, max_iter=15, verbose=True)
sib.fit(X)

# report standard clustering metrics
print("Homogeneity: %0.3f" % metrics.homogeneity_score(gold_labels, sib.labels_))
print("Completeness: %0.3f" % metrics.completeness_score(gold_labels, sib.labels_))
print("V-measure: %0.3f" % metrics.v_measure_score(gold_labels, sib.labels_))
print("Adjusted Rand-Index: %.3f" % metrics.adjusted_rand_score(gold_labels, sib.labels_))

Expected result:

sIB information stats on best partition:
	I(T;Y) = 0.5685, H(T) = 4.1987
	I(T;Y)/I(X;Y) = 0.1468
	H(T)/H(X) = 0.2956
Homogeneity: 0.616
Completeness: 0.633
V-measure: 0.624
Adjusted Rand-Index: 0.507

See the Examples directory for more illustrations and a comparison against K-Means.

License

Copyright IBM Corporation 2020

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

If you would like to see the detailed LICENSE click here.

Authors

If you have any questions or issues you can create a new issue here.

Reference

N. Slonim, N. Friedman, and N. Tishby (2002). Unsupervised Document Classification using Sequential Information Maximization. SIGIR 2002. https://dl.acm.org/doi/abs/10.1145/564376.564401

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sib-clustering-0.1.1.tar.gz (141.7 kB view details)

Uploaded Source

Built Distributions

sib_clustering-0.1.1-cp38-cp38-win_amd64.whl (214.7 kB view details)

Uploaded CPython 3.8 Windows x86-64

sib_clustering-0.1.1-cp38-cp38-win32.whl (200.5 kB view details)

Uploaded CPython 3.8 Windows x86

sib_clustering-0.1.1-cp38-cp38-manylinux2010_x86_64.whl (572.1 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

sib_clustering-0.1.1-cp38-cp38-manylinux2010_i686.whl (541.6 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

sib_clustering-0.1.1-cp38-cp38-manylinux1_x86_64.whl (572.1 kB view details)

Uploaded CPython 3.8

sib_clustering-0.1.1-cp38-cp38-manylinux1_i686.whl (541.6 kB view details)

Uploaded CPython 3.8

sib_clustering-0.1.1-cp38-cp38-macosx_10_9_x86_64.whl (215.1 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

sib_clustering-0.1.1-cp37-cp37m-win_amd64.whl (213.1 kB view details)

Uploaded CPython 3.7m Windows x86-64

sib_clustering-0.1.1-cp37-cp37m-win32.whl (199.0 kB view details)

Uploaded CPython 3.7m Windows x86

sib_clustering-0.1.1-cp37-cp37m-manylinux2010_x86_64.whl (539.5 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

sib_clustering-0.1.1-cp37-cp37m-manylinux2010_i686.whl (507.7 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

sib_clustering-0.1.1-cp37-cp37m-manylinux1_x86_64.whl (539.5 kB view details)

Uploaded CPython 3.7m

sib_clustering-0.1.1-cp37-cp37m-manylinux1_i686.whl (507.7 kB view details)

Uploaded CPython 3.7m

sib_clustering-0.1.1-cp37-cp37m-macosx_10_9_x86_64.whl (215.1 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

sib_clustering-0.1.1-cp36-cp36m-win_amd64.whl (213.0 kB view details)

Uploaded CPython 3.6m Windows x86-64

sib_clustering-0.1.1-cp36-cp36m-win32.whl (199.0 kB view details)

Uploaded CPython 3.6m Windows x86

sib_clustering-0.1.1-cp36-cp36m-manylinux2010_x86_64.whl (540.1 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

sib_clustering-0.1.1-cp36-cp36m-manylinux2010_i686.whl (507.2 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

sib_clustering-0.1.1-cp36-cp36m-manylinux1_x86_64.whl (540.1 kB view details)

Uploaded CPython 3.6m

sib_clustering-0.1.1-cp36-cp36m-manylinux1_i686.whl (507.2 kB view details)

Uploaded CPython 3.6m

sib_clustering-0.1.1-cp36-cp36m-macosx_10_9_x86_64.whl (215.1 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file sib-clustering-0.1.1.tar.gz.

File metadata

  • Download URL: sib-clustering-0.1.1.tar.gz
  • Upload date:
  • Size: 141.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.53.0 CPython/3.8.6

File hashes

Hashes for sib-clustering-0.1.1.tar.gz
Algorithm Hash digest
SHA256 45bbc73218d64cc069b960e6088479244e55bb7990a82b16592a53830cad3d1f
MD5 73dba6e6005f7fe235841efe03351999
BLAKE2b-256 34469b8f66c2cfe3b3256508e737f894d7b574a691bf5c5d18ade12fee08ab07

See more details on using hashes here.

File details

Details for the file sib_clustering-0.1.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: sib_clustering-0.1.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 214.7 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.53.0 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.1.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 5a0be1a11c654a64c8dd73d3562b7f3652ba1fa7019ee4a574c037e7d70da14c
MD5 46850b543d50b11fd216a553d7d81b25
BLAKE2b-256 bd3f4e5f290e963a0933c575973f583e783ea2db11054c527236e5605c63cf67

See more details on using hashes here.

File details

Details for the file sib_clustering-0.1.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: sib_clustering-0.1.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 200.5 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.53.0 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.1.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 3ad699b9949da0276c495ca975b79073b456092244d86de35c1e9d30886a6ec0
MD5 950083ff228eacdae5f72ebae30e68bd
BLAKE2b-256 d1c4170042a8d0548442f3e453faee30a0eca1b2e8df55af9adbe4e0a706dada

See more details on using hashes here.

File details

Details for the file sib_clustering-0.1.1-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: sib_clustering-0.1.1-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 572.1 kB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.53.0 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.1.1-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ce1e51851e8e842c5128fd25636434552adbf38c3ba9839020f0dec4cbf56ef1
MD5 103e2d0ade9a7097ceabdec5d11b2dfd
BLAKE2b-256 644d81bade506f9fa8d4dd4cd42d70ca77ad5c1b365f9d6fbfa9f7215ab36941

See more details on using hashes here.

File details

Details for the file sib_clustering-0.1.1-cp38-cp38-manylinux2010_i686.whl.

File metadata

  • Download URL: sib_clustering-0.1.1-cp38-cp38-manylinux2010_i686.whl
  • Upload date:
  • Size: 541.6 kB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.53.0 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.1.1-cp38-cp38-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 3ae5b99393ae9d2a574ce641e52b7cc0c731a8ca414fc5e50735d12bb5247321
MD5 45a39a5d2239fa2e189ff89a3116ddf3
BLAKE2b-256 f5880c6673499341d2edae222149b83432054e5b74f05d8c2a0f77090c085924

See more details on using hashes here.

File details

Details for the file sib_clustering-0.1.1-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: sib_clustering-0.1.1-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 572.1 kB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.53.0 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.1.1-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 2eb1a55721f62d70a5e962548c6801907dc73dc3b064134ea23019d204e23a2a
MD5 2441804e41c9f2873e19316560138fb2
BLAKE2b-256 22259d2a186da00ebada3489b901d3c0d2de1073ed06bfcef4465a42f14bcf90

See more details on using hashes here.

File details

Details for the file sib_clustering-0.1.1-cp38-cp38-manylinux1_i686.whl.

File metadata

  • Download URL: sib_clustering-0.1.1-cp38-cp38-manylinux1_i686.whl
  • Upload date:
  • Size: 541.6 kB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.53.0 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.1.1-cp38-cp38-manylinux1_i686.whl
Algorithm Hash digest
SHA256 75b3dbb1e9d2322c9efefbad4366da844d789d163c09df5a1bec563a26b63ae4
MD5 b701d312ecfc843580da2e3abf031c3c
BLAKE2b-256 de5347d529ed9e5dd97543c3f64137c23ab2221d90c479b33b0d3d66c28c7535

See more details on using hashes here.

File details

Details for the file sib_clustering-0.1.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: sib_clustering-0.1.1-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 215.1 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.53.0 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.1.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ae9718714a0776f5faba593d7cca6f8dbffc1f30c1bd5c741306314424c78ee9
MD5 cbe46f56d6deae879b5054993f86e02c
BLAKE2b-256 147c37afad6975dbd40d05f54da5602bdf816c5db752ff83cf30bdd09a88e8b9

See more details on using hashes here.

File details

Details for the file sib_clustering-0.1.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: sib_clustering-0.1.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 213.1 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.53.0 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.1.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 05f11efd07c969c1de2967def174b96f62852b0f14c3a2cef7ced2c07626b9ed
MD5 febe0776095f32ae5c9910a0c2887e94
BLAKE2b-256 6d957660f64b00ab5da433446ff8be4aca72e2722615affdf1cbef0a8366e522

See more details on using hashes here.

File details

Details for the file sib_clustering-0.1.1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: sib_clustering-0.1.1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 199.0 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.53.0 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.1.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 03bb19eb12c6e1c6a53766b60fe171059d548eb77bc6ccf2d79d72d908b8300b
MD5 a0ad9cfe38785cc2cf52d6ad1c638557
BLAKE2b-256 0a56ece4e6d1f71aa13217869ae2dd0e9c4defdc73b4e77398d736b8f1d8187b

See more details on using hashes here.

File details

Details for the file sib_clustering-0.1.1-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: sib_clustering-0.1.1-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 539.5 kB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.53.0 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.1.1-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 4cd02917bef5e0a3c6c4b44c5462fa983ff8cb7e0c072f43f5d8b62f5c72fa78
MD5 c77ab51d232fba7dab9595c01e4dd59c
BLAKE2b-256 89a84afc2a1b7308288f94656442bf91f16dd8793c26990e4c978843b9e707f7

See more details on using hashes here.

File details

Details for the file sib_clustering-0.1.1-cp37-cp37m-manylinux2010_i686.whl.

File metadata

  • Download URL: sib_clustering-0.1.1-cp37-cp37m-manylinux2010_i686.whl
  • Upload date:
  • Size: 507.7 kB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.53.0 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.1.1-cp37-cp37m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 ab33ec6d752870062b306c731b1d610da08ffdbe4055f9e689c278402e7464e8
MD5 2176dca666b0bb0fef643785437234de
BLAKE2b-256 15012965c9d2fbff9a1e3ed69e6592a03f5716301f6f4d771a1534930de0d0b5

See more details on using hashes here.

File details

Details for the file sib_clustering-0.1.1-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: sib_clustering-0.1.1-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 539.5 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.53.0 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.1.1-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 0cd797226c0bbc8a0a58f889a89f07a340b1f25fdf65402c872762dfdc6fc051
MD5 b67d1d493badaa1c59d18259d29c0344
BLAKE2b-256 3334d1a4d75ee92a8f35b31cab9cd1fc4e6ae1590c4ec0f20d274335ba7b4699

See more details on using hashes here.

File details

Details for the file sib_clustering-0.1.1-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: sib_clustering-0.1.1-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 507.7 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.53.0 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.1.1-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 8e893ea1b1ae83f90ddf53b6be5a50f6d43726b69773b7af3f0db2d4611ce418
MD5 29c10f813351dd64930f3d55734e7929
BLAKE2b-256 15c0609964431643f0e5f2b6fde52de420d2a2cdebf994d38eacf3dfbf59577c

See more details on using hashes here.

File details

Details for the file sib_clustering-0.1.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: sib_clustering-0.1.1-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 215.1 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.53.0 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.1.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fc53911d45bf751605ec97919a7d2df6618c229b8f568d7670609c4dda7e9861
MD5 138ff9b0edd03925dd18394dc74bea88
BLAKE2b-256 3db03390892b0d794abbf64b828c94c7a2a178a9addbaea0c09b028bbc2c4842

See more details on using hashes here.

File details

Details for the file sib_clustering-0.1.1-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: sib_clustering-0.1.1-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 213.0 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.53.0 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.1.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 333c8e72e04d8d798cec520f0f7b056617a33f7638e1a25ab7e11bc6ab8c0d97
MD5 8148ba8bd4a2be71312a35f7c2f3f4c5
BLAKE2b-256 ed6614841dfa18200de4fa044ab3be267953870afcea7d925ae51ba8b6436a3b

See more details on using hashes here.

File details

Details for the file sib_clustering-0.1.1-cp36-cp36m-win32.whl.

File metadata

  • Download URL: sib_clustering-0.1.1-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 199.0 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.53.0 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.1.1-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 8072044cffe4f79764af7d9022eb1f3e26c35aaa1938e1c7da1a27ffa3a521a4
MD5 060ce25b2dbf1b1a669f83c6b39611e2
BLAKE2b-256 9b2be5f91cb4d4b4db2fc62f0af3a1d6c20b6074123ff9b465a1995f33dc61d6

See more details on using hashes here.

File details

Details for the file sib_clustering-0.1.1-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: sib_clustering-0.1.1-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 540.1 kB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.53.0 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.1.1-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 4326700cb4b3cd2e68d56b3a901aba7cb0795af172211d187fa199058b0c26b0
MD5 df1bd6d05585b14d96c97255dc3fc8ba
BLAKE2b-256 4e6bc13e2ddf7b19056737c3a9bc200a1e339006f5bab628901b7f1451930f2e

See more details on using hashes here.

File details

Details for the file sib_clustering-0.1.1-cp36-cp36m-manylinux2010_i686.whl.

File metadata

  • Download URL: sib_clustering-0.1.1-cp36-cp36m-manylinux2010_i686.whl
  • Upload date:
  • Size: 507.2 kB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.53.0 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.1.1-cp36-cp36m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 e5ab2ae712cc85c6d457390a64942e6612111c390f5f29ac886f9f537833d1b0
MD5 5fd2db4cafda82d8540c0b5633912a8d
BLAKE2b-256 d3f8abf1a7c087f01e7bf3166b246047d606bd86e3433d33a031b81ddf6558b7

See more details on using hashes here.

File details

Details for the file sib_clustering-0.1.1-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: sib_clustering-0.1.1-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 540.1 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.53.0 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.1.1-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 e5f9d65b329ebd3736ac0e441bf51b392237c7f01cef3de4be67e633475d1ea2
MD5 b871444780a1dd2d0b8d0ebbd6ef0b9d
BLAKE2b-256 e2b6ee440b69c206a3c700e2b83ea401016ddf7b428d15b5314e9379051e4f96

See more details on using hashes here.

File details

Details for the file sib_clustering-0.1.1-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: sib_clustering-0.1.1-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 507.2 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.53.0 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.1.1-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 ac5112ddca1a40836db91ed433d8ffedaa95125793153f925df58fd41e73eba4
MD5 85206bc2f30dd2607cb4aa5698e87119
BLAKE2b-256 a31729ad0c4b4e7865bce759c4e13591b8ce914cbb31956bb778331807cd4455

See more details on using hashes here.

File details

Details for the file sib_clustering-0.1.1-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: sib_clustering-0.1.1-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 215.1 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.53.0 CPython/3.8.6

File hashes

Hashes for sib_clustering-0.1.1-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e6d875b94a12bbcb5e65cba8054630aabd8f409bc34e5f02812d7faad53cafa2
MD5 800233abce6371b1efc2b44a523bd66d
BLAKE2b-256 3b26e8cd6f80a07345e93bf61764f3635189beda3fbcc5bd82c5a326bc8cc880

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page