Skip to main content

sequential Information Bottleneck

Project description

sequential Information Bottleneck (sIB)

GitHub Actions CI status

Scope

This project provides an efficient implementation of the text clustering algorithm "sequential Information Bottleneck" (sIB), introduced by Slonim, Friedman and Tishby (2002). The project is packaged as a python library with a cython-wrapped C++ extension for the partition optimization code. A pure python implementation is included as well. The implementation is documented here.

Installation

pip install sib-clustering

Usage

The main class in this library is SIB, which implements the clustering interface of SciKit Learn, providing methods such as fit(), fit_transform(), fit_predict(), etc.

The sample code below clusters the 18.8K documents of the 20-News-Groups dataset into 20 clusters:

import numpy as np
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.datasets import fetch_20newsgroups
from sklearn import metrics
from sib import SIB

# read the dataset
dataset = fetch_20newsgroups(subset='all', categories=None,
                             shuffle=True, random_state=256)

gold_labels = dataset.target
n_clusters = np.unique(gold_labels).shape[0]

# create count vectors using the 10K most frequent words
vectorizer = CountVectorizer(max_features=10000)
X = vectorizer.fit_transform(dataset.data)

# SIB initialization and clustering; parameters:
# perform 10 random initializations (n_init=10); the best one is returned.
# up to 15 optimization iterations in each initialization (max_iter=15)
# use all cores in the running machine for parallel execution (n_jobs=-1)
sib = SIB(n_clusters=n_clusters, random_state=128, n_init=10,
          n_jobs=-1, max_iter=15, verbose=True)
sib.fit(X)

# report standard clustering metrics
print("Homogeneity: %0.3f" % metrics.homogeneity_score(gold_labels, sib.labels_))
print("Completeness: %0.3f" % metrics.completeness_score(gold_labels, sib.labels_))
print("V-measure: %0.3f" % metrics.v_measure_score(gold_labels, sib.labels_))
print("Adjusted Rand-Index: %.3f" % metrics.adjusted_rand_score(gold_labels, sib.labels_))

Expected result:

sIB information stats on best partition:
	I(T;Y) = 0.5685, H(T) = 4.1987
	I(T;Y)/I(X;Y) = 0.1468
	H(T)/H(X) = 0.2956
Homogeneity: 0.616
Completeness: 0.633
V-measure: 0.624
Adjusted Rand-Index: 0.507

See the Examples directory for more illustrations and a comparison against K-Means.

License

Copyright IBM Corporation 2020

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

If you would like to see the detailed LICENSE click here.

Authors

If you have any questions or issues you can create a new issue here.

Reference

N. Slonim, N. Friedman, and N. Tishby (2002). Unsupervised Document Classification using Sequential Information Maximization. SIGIR 2002. https://dl.acm.org/doi/abs/10.1145/564376.564401

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sib-clustering-0.1.6.tar.gz (144.1 kB view details)

Uploaded Source

Built Distributions

sib_clustering-0.1.6-cp39-cp39-win_amd64.whl (208.5 kB view details)

Uploaded CPython 3.9 Windows x86-64

sib_clustering-0.1.6-cp39-cp39-win32.whl (197.7 kB view details)

Uploaded CPython 3.9 Windows x86

sib_clustering-0.1.6-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (571.7 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

sib_clustering-0.1.6-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl (539.1 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686 manylinux: glibc 2.5+ i686

sib_clustering-0.1.6-cp39-cp39-macosx_10_9_x86_64.whl (221.2 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

sib_clustering-0.1.6-cp38-cp38-win_amd64.whl (208.3 kB view details)

Uploaded CPython 3.8 Windows x86-64

sib_clustering-0.1.6-cp38-cp38-win32.whl (197.6 kB view details)

Uploaded CPython 3.8 Windows x86

sib_clustering-0.1.6-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (580.2 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

sib_clustering-0.1.6-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl (548.4 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686 manylinux: glibc 2.5+ i686

sib_clustering-0.1.6-cp38-cp38-macosx_10_9_x86_64.whl (219.3 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

sib_clustering-0.1.6-cp37-cp37m-win_amd64.whl (207.5 kB view details)

Uploaded CPython 3.7m Windows x86-64

sib_clustering-0.1.6-cp37-cp37m-win32.whl (196.5 kB view details)

Uploaded CPython 3.7m Windows x86

sib_clustering-0.1.6-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (548.5 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

sib_clustering-0.1.6-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl (514.0 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686 manylinux: glibc 2.5+ i686

sib_clustering-0.1.6-cp37-cp37m-macosx_10_9_x86_64.whl (219.5 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

sib_clustering-0.1.6-cp36-cp36m-win_amd64.whl (217.3 kB view details)

Uploaded CPython 3.6m Windows x86-64

sib_clustering-0.1.6-cp36-cp36m-win32.whl (202.2 kB view details)

Uploaded CPython 3.6m Windows x86

sib_clustering-0.1.6-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (548.6 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

sib_clustering-0.1.6-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl (513.3 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686 manylinux: glibc 2.5+ i686

sib_clustering-0.1.6-cp36-cp36m-macosx_10_9_x86_64.whl (219.4 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file sib-clustering-0.1.6.tar.gz.

File metadata

  • Download URL: sib-clustering-0.1.6.tar.gz
  • Upload date:
  • Size: 144.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for sib-clustering-0.1.6.tar.gz
Algorithm Hash digest
SHA256 5e5167a4fb3c25138cd6af89dda3e901439f34f89126434ddb9205becc1e004c
MD5 9fa90db55a313127c4b8fbcca360e690
BLAKE2b-256 decccb1f04a58930fbfcd4d1eed74e8f66457e70e6850be3d31e66adc971c0d4

See more details on using hashes here.

File details

Details for the file sib_clustering-0.1.6-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: sib_clustering-0.1.6-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 208.5 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for sib_clustering-0.1.6-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 02f0c9cf4d40933cd454be17e596d0973a3ced6a40f7d18aa56d211b62664ffe
MD5 df2173f5786bc397eb345c736c220d20
BLAKE2b-256 9652bd3066b01b34b822bd8a0a7cf6a2c8797908c73bd7ba87877fbac8eb8a57

See more details on using hashes here.

File details

Details for the file sib_clustering-0.1.6-cp39-cp39-win32.whl.

File metadata

  • Download URL: sib_clustering-0.1.6-cp39-cp39-win32.whl
  • Upload date:
  • Size: 197.7 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for sib_clustering-0.1.6-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 cc3b6fe2a794bd2122d5f5aaa4d6bf7c53bb7a63c1e8afe486e31225c0ced726
MD5 713df97ecb920b56cb7733aa3751fad5
BLAKE2b-256 ce5f566d070def7080de90ba8c4278cba83f9bba757acb73dad033092196a641

See more details on using hashes here.

File details

Details for the file sib_clustering-0.1.6-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for sib_clustering-0.1.6-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ba182a968518d016537fac9de307ec8e7aa011800a61519e162e8cf18794c1d0
MD5 77cabd8a99e9d16ad2e084687610fa38
BLAKE2b-256 5604392d3639d39882321f57097341128da036e8ece135981007ed60e41d31d5

See more details on using hashes here.

File details

Details for the file sib_clustering-0.1.6-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for sib_clustering-0.1.6-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 facac829582c52791e71ac158d7e5803c7495f756252def48ffae405252849c5
MD5 08be8cf1bb1e290109bea78074d48d76
BLAKE2b-256 638687024cccf0f782eeb7a7ba2c11d4f067e6d5b848a02c3eb9a44c83941ec7

See more details on using hashes here.

File details

Details for the file sib_clustering-0.1.6-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: sib_clustering-0.1.6-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 221.2 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for sib_clustering-0.1.6-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e3350119c866991273b32da25f21b6ee348213255972c9c4b912c2b0f6eaecfd
MD5 71c5eb11043022275391ac72ee90d2ff
BLAKE2b-256 dc52c0ae58f847f9a0fba33d9c13374ba78719bc3841c471d0543c725a631a28

See more details on using hashes here.

File details

Details for the file sib_clustering-0.1.6-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: sib_clustering-0.1.6-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 208.3 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for sib_clustering-0.1.6-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 8b8ae4d5bb97078eb20253d2632e8abc4d93c2f3b9ad8be6fa34efe3f643785d
MD5 a31ab61528f009cc35e6830994f4138f
BLAKE2b-256 ecd02d44936d33a8fe4b7ef6479141d67b9ac2f710015263604f34d0b9b1a6a8

See more details on using hashes here.

File details

Details for the file sib_clustering-0.1.6-cp38-cp38-win32.whl.

File metadata

  • Download URL: sib_clustering-0.1.6-cp38-cp38-win32.whl
  • Upload date:
  • Size: 197.6 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for sib_clustering-0.1.6-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 bbd56eb11a0e1716cf98eeddc9175c45c9b05910690d25c6da2a77c2bf9f2415
MD5 320e5fc1e4e7563a1b294851a3c8f4e8
BLAKE2b-256 c70f34d8cfce23a550dcdf2f0381cbad165ede7e45bd5f694a6a4a28f7aed038

See more details on using hashes here.

File details

Details for the file sib_clustering-0.1.6-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for sib_clustering-0.1.6-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 020123c9b5c59ae86489fdc67b4baea838fea6da5feadc4e1b864bb1473431a7
MD5 c4d07676a14ccaacf8b8263f32b05541
BLAKE2b-256 249bd0d260ad84c39a46c9e1ef104171937ffede70cc3e523f53bf2ed6f57dc5

See more details on using hashes here.

File details

Details for the file sib_clustering-0.1.6-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for sib_clustering-0.1.6-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 8368810033ca78d5dfa26302daae1d9aefa9beafbb1bfecb20d7fd5bdf05e14f
MD5 4ab2a624f0dd79a258b0c3c7e1c348b0
BLAKE2b-256 f7012d7754c88558c90453ad46b16093825e7127eabc403f9038eeabc2fd90c4

See more details on using hashes here.

File details

Details for the file sib_clustering-0.1.6-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: sib_clustering-0.1.6-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 219.3 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for sib_clustering-0.1.6-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 282902e0ca77a29ebc92ad14eb8fa83633b0bc00e7fd67ee9c27e08644b8ac5e
MD5 336eb1ff72bdd56aa6030232dc852f5d
BLAKE2b-256 7699af787016b65f23ab3d39dc57764b561d87231dea571db7d97c89439c33bc

See more details on using hashes here.

File details

Details for the file sib_clustering-0.1.6-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: sib_clustering-0.1.6-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 207.5 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for sib_clustering-0.1.6-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 bcae785a4bf7a20e21a76450b7be0e786322aaf339980e3b0e7d525d15f49da8
MD5 c220d41b40ec8b1e57aaa95351588a24
BLAKE2b-256 849ebce9964bb3cdaf99f997f8e92dc3cc966cdc60548f3beec280bb82ff03bf

See more details on using hashes here.

File details

Details for the file sib_clustering-0.1.6-cp37-cp37m-win32.whl.

File metadata

  • Download URL: sib_clustering-0.1.6-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 196.5 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for sib_clustering-0.1.6-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 9f8f6fd452983f3f21c878767a39d9ca5b177b467e479a40288d7e19afafa71f
MD5 4a7f0628280dfb7ebaf10064b7379cf0
BLAKE2b-256 25dc193d8d513625b3f33bf47d68584b39cdd87285845a97d89ad6ebfe8bbc33

See more details on using hashes here.

File details

Details for the file sib_clustering-0.1.6-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for sib_clustering-0.1.6-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 4245614c2fdc71c67159b3d05dc846d366530bfbaa25745885dd663383b8b509
MD5 30d161d1622720736c21e57d53a851e2
BLAKE2b-256 f5e1a0b734f9d5c3d358f20cab030e0ffcd0befe965a7f19983c8eaba15d2525

See more details on using hashes here.

File details

Details for the file sib_clustering-0.1.6-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for sib_clustering-0.1.6-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 fae93b2711ccfd177b979eeceeab8ba122e21e61bc44fdbf4a3adfa103f08189
MD5 62c43f05725253987d07bcaf9a1fe824
BLAKE2b-256 c0e4bd06555089423307bf76e085fbc0655da8296e2cb91b0d3a7dcbb277e9c4

See more details on using hashes here.

File details

Details for the file sib_clustering-0.1.6-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: sib_clustering-0.1.6-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 219.5 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for sib_clustering-0.1.6-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 11d9890de0294573129355dea192e9be4740b30c6ef751f0ae5ff0e0e92e33f4
MD5 3d23d5d32e20c199e2ecdb8e228dd254
BLAKE2b-256 a7766c1db45c82341a36d2e79d37bd35ffe954a8787ce21b4350dae89236ec71

See more details on using hashes here.

File details

Details for the file sib_clustering-0.1.6-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: sib_clustering-0.1.6-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 217.3 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for sib_clustering-0.1.6-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 89a24ea8697b6a1953519284093dc6aafd763fb425c47badbffd2e535bc1b9a2
MD5 7112209f201ff2cdea6e87a9acbcbb75
BLAKE2b-256 2024b0e949541d1bb759c88aa1d266f77c47ec6bcfa9b050d2801b4349140711

See more details on using hashes here.

File details

Details for the file sib_clustering-0.1.6-cp36-cp36m-win32.whl.

File metadata

  • Download URL: sib_clustering-0.1.6-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 202.2 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for sib_clustering-0.1.6-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 f2d030a3f329dce149a202c4b26dcc9af763643e8d303f210ec92d0e06e3127d
MD5 fe374f178621f5dcb2ec91f68c95c780
BLAKE2b-256 2196af3e993ae725aa5edf375cf6bce35c056ed896b3abe9d4cf32da9ab83468

See more details on using hashes here.

File details

Details for the file sib_clustering-0.1.6-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for sib_clustering-0.1.6-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 62cadc3dbfd9e114c9c70908d919cb2255d3075d1f050421bb68630656a6894e
MD5 0eb14ad85a6ab1ed3455a8feaa328d2e
BLAKE2b-256 0b24362ea8df3c0e5d0ffd227a3cc96ffae1af1be9d4875e4ef3c32bb2f89d81

See more details on using hashes here.

File details

Details for the file sib_clustering-0.1.6-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for sib_clustering-0.1.6-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 53900cfb5519a5251cd596e087af95a68b05c4332f6528810cd8e71afad7eeff
MD5 7914830a273f41eadde215cd1b85cd3b
BLAKE2b-256 721d6f46ea5e86579065e91c9461159d57a4108ebc5459610ccaa417e80a1bd4

See more details on using hashes here.

File details

Details for the file sib_clustering-0.1.6-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: sib_clustering-0.1.6-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 219.4 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for sib_clustering-0.1.6-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5124b0b8ee85d35ddfaf772ff14ae1463f0715673f948e412b0fe8dcd6a739d1
MD5 9fe1fbd793f70cdf3285b81dbf6df544
BLAKE2b-256 6fd7f91ec4a9cd8a1284b3574350fa4e726c605504312994078aec6e4e8dfc67

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page