Skip to main content

A set of tools to load, preprocess and analyze data collected through the MultiSensor Data Collection App

Project description

SideSeeing Tools

SideSeeing Tools is a collection of scripts designed to load, preprocess, and analyze data gathered through the MultiSensor Data Collection App.

Installation

pip install sideseeing-tools

Usage

Create a dataset

from sideseeing_tools import sideseeing

ds = sideseeing.SideSeeingDS(root_dir='/home/user/my-project')

# Available iterators
#   .instances  // Tip: dictionary of instances (key=name, value=SideSeeingInstance)
#   .iterator   // Tip: for i in ds.iterator: i.name

# Available attributes and methods
#   .metadata() // Tip: generates and prints the dataset metadata
#   .size       // Tip: shows the number of instances  
#   .sensors    // Tip: lists the names of the available sensors

Get a random sample from the dataset

my_sample = ds.instance

Check the available sensors by instance

ds.sensors
# This command will produce output like this:

{
    # A key representing the number of available axes
    'sensors1': {
        # A key representing the sensor name
        'lps22h barometer sensor': {
            # Keys representing the instances where the sensor data is found
            'FhdFastest#S10e-2024-08-01-10-42-43-354',
            'FhdGame#S10e-2024-08-01-10-25-08-383',
            'FhdNormal#S10e-2024-08-01-10-02-18-947',
            'FhdUi#S10e-2024-08-01-10-13-50-369'
        },
        'tcs3407 uncalibrated lux sensor': {
            'FhdFastest#S10e-2024-08-01-10-42-43-354',
            ...
        },
        ...
    },
    'sensors3': {
        'ak09918c magnetic field sensor': {...},
        'bmi160_accelerometer accelerometer non-wakeup': {
            'FhdFastest#Mia3-2024-08-01-10-42-44-639',
            'FhdNormal#Mia3-2024-08-01-10-02-22-118',
            ...
        },
        ...
    },
    'sensors6': {
        ...
    }
}

Get accelerometer data from the sample

my_sample = ds.instances['FhdNormal#Mia3-2024-08-01-10-02-22-118']
my_sample_accel_data = my_sample.sensors3['bmi160_accelerometer accelerometer non-wakeup']
my_sample_accel_data
Datetime UTC x y z Time (s)
0 2024-03-21 19:33:01.550000 9.34247 -0.270545 3.10767 0
1 2024-03-21 19:33:01.561000 9.51725 -0.347159 3.00233 0.011
2 2024-03-21 19:33:01.571000 9.46458 -0.407014 2.81079 0.021
3 2024-03-21 19:33:01.581000 9.35205 -0.395043 2.79164 0.031
4 2024-03-21 19:33:01.590000 9.36402 -0.263362 2.77488 0.04

Extract a snippet from a sample (video and sensor data)

my_sample.extract_snippet(
    start_time=2,                        # Start time of the snippet (in seconds)
    end_time=17,                         # End time of the snippet (in seconds)
    output_dir='/home/user/snippet_2_17' # Directory to save the extracted snippet
)

Running the command extract_snippet will generate one file for the video (with audio) and one file for each sensor present in the instance. See an illustrative example in the following file tree.

home/
├─ user/
│  ├─ snippet_2_17/
│  │  ├─ accelerometer_2_12.csv
│  │  ├─ barometer_2_12.csv
│  │  ├─ gravity_2_12.csv
│  │  ├─ gyroscope_2_12.csv
│  │  ├─ gyroscope uncalibrated_2_12.csv
│  │  ├─ light uncalibrated_2_12.csv
│  │  ├─ linear accelerometer_2_12.csv
│  │  ├─ magnetometer_2_12.csv
│  │  ├─ magnetometer uncalibrated_2_12.csv
│  │  ├─ video_2_12.mp4

Extract a snippet for a video

from sideseeing_tools import media

# Extract a 15-second snippet from the video, beginning at the 3-second mark and ending at the 18-second mark
media.extract_video_snippet(
    source_path=my_sample.video,    # Path to the input mp4 file
    start_second=3,                 # Start time of the snippet (in seconds)
    end_second=18,                  # End time of the snippet (in seconds)
    output_path='my_snippet.mp4'    # Path to save the extracted snippet
)

Extract a snippet for sensor data

from sideseeing_tools import utils

# Extract a 15-second snippet from the sensor data, beginning at the 3-second mark and ending at the 18-second mark
utils.extract_sensor_snippet(
    data=my_sample.sensors3['bmi160_accelerometer accelerometer non-wakeup'],  # DataFrame containing sensor data
    start_time=3,                                                              # Start time of the snippet (in seconds)
    end_time=18,                                                               # End time of the snippet (in seconds)
    output_path='my_sensor_snippet.csv'                                        # Path to save the extracted sensor snippet
)

Iterate over the samples

for i in ds.iterator:
    print(i.name, i.video)

Create a plotter

from sideseeing_tools import plot

plotter = plot.SideSeeingPlotter(ds, taxonomy='/home/user/my-project/taxonomy.csv')

# Available methods:
#   .generate_video_sensor3()
#   .plot_dataset_cities()
#   .plot_dataset_map()
#   .plot_dataset_tags_matrix()
#   .plot_dataset_tags()
#   .plot_instance_audio()
#   .plot_instance_map()
#   .plot_instance_sensors3_and_audio()
#   .plot_instance_video_frames_at_times()
#   .plot_instance_video_frames()
#   .plot_sensor()
#   .plot_sensors()

Additional tips

We suggest implementing the following folder structure: create a directory named data to contain all recordings. By doing so, when instantiating the SideSeeingDataset, a metadata.csv file will be generated in the root directory. Here is the command to instantiate a dataset:

ds = sideseeing.SideSeeingDS('/home/user/my-project', subdir='data', name='MyDataset')

And here is the suggested folder structure:

my-project/
├─ data/
│  ├─ place01/
│  │  ├─ route01/
│  │  │  ├─ consumption.csv
│  │  │  ├─ gps.csv
│  │  │  ├─ metadata.json
│  │  │  ├─ sensors.one.csv
│  │  │  ├─ sensors.three.csv
│  │  │  ├─ sensors.three.uncalibrated.csv
│  │  │  ├─ video.gif
│  │  │  ├─ video.mp4
│  │  │  ├─ video.wav
│  │  ├─ route02/
│  ├─ place02/
│  ├─ place03/
├─ metadata.csv
├─ taxonomy.csv

Sensor data specification before SideSeeing conversion

The following data outlines the specifications of sensor content before SideSeeing conversion, i.e., when accessing them directly through the files generated by the MultSensor Data Collection tool.

File consumption.csv

datetime_utc battery_microamperes
2024-03-21T19:38:04.961Z -1431
2024-03-21T19:38:05.961Z -1011
2024-03-21T19:38:06.961Z -2216

File gps.csv

datetime_utc gps_interval accuracy latitude longitude
2024-03-21T19:38:10.309Z 15 16.0 -23.5645676 -46.7395994
2024-03-21T19:38:38.033Z 15 57.639 -23.5645617 -46.739602
2024-03-21T19:38:54.120Z 15 26.611 -23.5645528 -46.7396658

File sensors.one.csv

timestamp_nano datetime_utc name axis_x accuracy
0 2024-03-13T13:40:27.243Z Palm Proximity Sensor 5.0 3
712657771915658 2024-03-21T19:38:05.015Z TCS3407 Uncalibrated lux Sensor 1810.0 3
712657931915658 2024-03-21T19:38:05.174Z TCS3407 Uncalibrated lux Sensor 1812.0 3

File sensors.three.csv

timestamp_nano datetime_utc name axis_x axis_y axis_z accuracy
712657652031560 2024-03-21T19:38:04.895Z LSM6DSO Acceleration Sensor 9.603442 -0.10295067 3.9959226 3
712657673895658 2024-03-21T19:38:04.916Z LSM6DSO Acceleration Sensor 9.823709 -0.38067806 3.9097314 3
712657652031560 2024-03-21T19:38:04.895Z LSM6DSO Gyroscope Sensor 0.113544576 0.42852196 0.083306745 3

File sensors.three.uncalibrated.csv

timestamp_nano datetime_utc name axis_x axis_y axis_z delta_x delta_y delta_z accuracy
712657851915658 2024-03-21T19:38:05.094Z Uncalibrated Magnetic Sensor 268.56 -9.54 -230.45999 255.48 -2.28 -227.94 3
712657852615658 2024-03-21T19:38:05.096Z Gyroscope sensor UnCalibrated 0.044593163 -0.13439035 0.07086037 -0.003009122 -0.016193425 -0.0026664268 3
712657862615658 2024-03-21T19:38:05.105Z Gyroscope sensor UnCalibrated 0.042760566 -0.05009095 0.100792766 -0.003009122 -0.016193425 -0.0026664268 3
712657874678965 2024-03-21T19:38:05.118Z Uncalibrated Magnetic Sensor 268.62 -8.639999 -231.48 255.48 -2.28 -227.94 3
712657872615658 2024-03-21T19:38:05.116Z Gyroscope sensor UnCalibrated 0.064751714 -0.007330383 0.118507855 -0.003009122 -0.016193425 -0.0026664268 3

List of SideSeeingInstance attributes/methods

Attribute or method Description
geolocation_points List of latitude and longitude coordinates representing geographical points.
geolocation_center Latitude and longitude coordinates representing the geographic center of a specific area.
audio Path to the audio file associated with the collected data.
gif Path to the GIF file associated with the collected data.
video Path to the video file associated with the collected data.
sensors1 Dictionary containing data from one-axis sensors.
sensors3 Dictionary containing data from three-axis sensors.
sensors6 Dictionary containing data from six-axis sensors, including uncalibrated data.
label List of categories and tags representing the taxonomy of sidewalks.
video_start_time Start time of the video associated with the collected data.
video_stop_time Stop time of the video associated with the collected data.
extract_snippet Extracting a snippet from the sample (video and sensor data).

Author

Rafael J P Damaceno

About us

The SideSeeing Project aims to develop methods based on Computer Vision and Machine Learning for Urban Informatics applications. Our goal is to devise strategies for obtaining and analyzing data related to urban accessibility. Take a look at our website.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sideseeing_tools-0.4.1.tar.gz (18.4 kB view details)

Uploaded Source

Built Distribution

sideseeing_tools-0.4.1-py3-none-any.whl (17.0 kB view details)

Uploaded Python 3

File details

Details for the file sideseeing_tools-0.4.1.tar.gz.

File metadata

  • Download URL: sideseeing_tools-0.4.1.tar.gz
  • Upload date:
  • Size: 18.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.8.18

File hashes

Hashes for sideseeing_tools-0.4.1.tar.gz
Algorithm Hash digest
SHA256 854a27c4bb37aa24e8f9cd4f7e816df37ca14cc2f4e8900258cbb06b053dbc3b
MD5 42998d9acace4860053396e511a59ae3
BLAKE2b-256 e4fd8111955e42bd5ed845456ed87ec1e7ad0488879fb6ee2064ea85784516eb

See more details on using hashes here.

File details

Details for the file sideseeing_tools-0.4.1-py3-none-any.whl.

File metadata

File hashes

Hashes for sideseeing_tools-0.4.1-py3-none-any.whl
Algorithm Hash digest
SHA256 accb73dd44d5ca815f6199194e41fc0404c583d47352f2db5a03aab6d0f277be
MD5 1e836d0dff9a6db86d22c7792c5de05e
BLAKE2b-256 5e822bfab692df9d9b45200f029d8c288e4b977a2ca2d58b7f8f8a80d1df1759

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page