A python class for the Economic Information System (SIE) API of Banco de México.
Project description
sie_banxico
A python class for the Economic Information System (SIE) API of Banco de México.
Args: token (str): A query token from Banco de México id_series (list): A list with the economic series id or with the series id range to query. ** A list must be given even though only one serie is consulted. language (str): Language of the obtained information. 'en' (default) for english or 'es' for spanish
Notes: (1) In order to retrive information from the SIE API, a query token is required. The token can be requested here (2) Each economic serie is related to an unique ID. The full series catalogue can be consulted here
Pypi Installation
pip install sie_banxico
SIEBanxico Class Instance
Querying Monetary Aggregates M1 (SF311408) and M2 (SF311418) Data
>>> from api_banxico import SIEBanxico
>>> api = SIEBanxico(token = token, id_series = ['SF311408' ,'SF311418'], language = 'en')
Class documentation and attributes
>>> api.__doc__
'Returns the full class documentation'
>>> api.token
'1b7da065cf574289a2cb511faeXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' # This is an example token
>>> api.series
'SF311408,SF311418'
Methods for modify the arguments of the object
set_token: Change the current query token
>>> api.set_token(token = new_token)
set_id_series: Allows to change the series to query
>>> api.append_id_series(id_series = ['SF311412'])
>>> api.series
'SF311408,SF311418,SF311412'
append_id_series: Allows to update the series to query
>>> api.set_id_series(id_series='SF311408-SF311418')
>>> api.series
'SF311408-SF311418'
GET Request Methods
>>> api = SIEBanxico(token = token, id_series = ['SF311408' ,'SF311418']
get_metadata: Allows to consult metadata of the series
Allows to consult metadata of the series.
Returns:
dict: json response format
>>> api.get_metadata()
{'bmx': {'series': [{'idSerie': 'SF311418', 'titulo': 'Monetary Aggregates M2 = M1 + monetary instruments held by residents', 'fechaInicio': '12/01/2000', 'fechaFin': '11/01/2021', 'periodicidad': 'Monthly', 'cifra': 'Stocks', 'unidad': 'Thousands of Pesos', 'versionada': False}, {'idSerie': 'SF311408', 'titulo': 'Monetary Aggregates M1', 'fechaInicio': '12/01/2000', 'fechaFin': '11/01/2021', 'periodicidad': 'Monthly', 'cifra': 'Stocks', 'unidad': 'Thousands of Pesos', 'versionada': False}]}}
get_lastdata: Returns the most recent published data
Returns the most recent published data for the requested series. Args: pct_change (str, optional): None (default) for levels, "PorcObsAnt" for change rate compared to the previous observation, "PorcAnual" for anual change rate, "PorcAcumAnual" for annual acummulated change rate. Returns: dict: json response format
>>> api.get_lastdata()
{'bmx': {'series': [{'idSerie': 'SF311418', 'titulo': 'Monetary Aggregates M2 = M1 + monetary instruments held by residents', 'datos': [{'fecha': '01/11/2021', 'dato': '11,150,071,721.09'}]}, {'idSerie': 'SF311408', 'titulo': 'Monetary Aggregates M1', 'datos': [{'fecha': '01/11/2021', 'dato': '6,105,266,291.65'}]}]}}
get_timeseries: Allows to consult time series data
Allows to consult the whole time series data, corresponding to the period defined between the initial date and the final date in the metadata.
Args:
pct_change (str, optional): None (default) for levels, "PorcObsAnt" for change rate compared to the previous observation, "PorcAnual" for anual change rate, "PorcAcumAnual" for annual acummulated change rate.
Returns:
dict: json response format
>>> api.get_timeseries(pct_change='PorcAnual')
{'bmx': {'series': [{'idSerie': 'SF311418',
'titulo': 'Monetary Aggregates M2 = M1 + monetary instruments held by residents',
'datos': [{'fecha': '01/12/2001', 'dato': '12.89'},
{'fecha': '01/01/2002', 'dato': '13.99'},
...
{'fecha': '01/11/2021', 'dato': '13.38'}],
'incrementos': 'PorcAnual'}]}}
get_timeseries_range: Returns the data for the period defined
Returns the data of the requested series, for the defined period.
Args:
init_date (str): The date on which the period of obtained data starts. The date must be sent in the format yyyy-mm-dd. If the given date is out of the metadata time range, the oldest value is returned.
end_date (str): The date on which the period of obtained data concludes. The date must be sent in the format yyyy-mm-dd. If the given date is out of the metadata time range, the most recent value is returned.
pct_change (str, optional): None (default) for levels, "PorcObsAnt" for change rate compared to the previous observation, "PorcAnual" for anual change rate, "PorcAcumAnual" for annual acummulated change rate.
Returns:
dict: json response format
>>> api.get_timeseries_range(init_date='2000-12-31', end_date='2004-04-01')
{'bmx': {'series': [{'idSerie': 'SF311408',
'titulo': 'Monetary Aggregates M1',
'datos': [{'fecha': '01/01/2001', 'dato': '524,836,129.99'},
{'fecha': '01/02/2001', 'dato': '517,186,605.97'},
...
{'fecha': '01/04/2004', 'dato': '2,306,755,672.89'}]}]}}
Pandas integration for data manipulation (and further analysis)
All the request methods returns a response in json format that can be used with other Python libraries.
The response for the api.get_timeseries_range(init_date='2000-12-31', end_date='2004-04-01') is a nested dictionary, so we need to follow a path to extract the specific values for the series and then transform the data into a pandas object; like a Serie or a DataFrame. For example:
data = api.get_timeseries_range(init_date='2000-12-31', end_date='2004-04-01')
# Extract the Monetary Aggregate M1 data
data['bmx']['series'][0]['datos']
[{'fecha': '01/01/2001', 'dato': '524,836,129.99'},
...
{'fecha': '01/04/2004', 'dato': '799,774,807.43'}]
# Transform the data into a pandas DataDrame
import pandas as pd
df = pd.DataFrame(timeseries_range['bmx']['series'][0]['datos'])
df.head()
fecha dato
0 01/01/2001 524,836,129.99
1 01/02/2001 517,186,605.97
2 01/03/2001 509,701,873.04
3 01/04/2001 511,952,430.01
4 01/05/2001 514,845,459.96
Another useful pandas function to transform json formats into a dataframe is 'json_normalize':
df = pd.json_normalize(timeseries_range['bmx']['series'], record_path = 'datos', meta = ['idSerie', 'titulo'])
df['titulo'] = df['titulo'].apply(lambda x: x.replace('Monetary Aggregates M2 = M1 + monetary instruments held by residents', 'Monetary Aggregates M2'))
df.head()
fecha dato idSerie titulo
0 01/01/2001 524,836,129.99 SF311408 Monetary Aggregates M1
1 01/02/2001 517,186,605.97 SF311408 Monetary Aggregates M1
2 01/03/2001 509,701,873.04 SF311408 Monetary Aggregates M1
3 01/04/2001 511,952,430.01 SF311408 Monetary Aggregates M1
4 01/05/2001 514,845,459.96 SF311408 Monetary Aggregates M1
df.tail()
fecha dato idSerie titulo
75 01/12/2003 2,331,594,974.69 SF311418 Monetary Aggregates M2
76 01/01/2004 2,339,289,328.74 SF311418 Monetary Aggregates M2
77 01/02/2004 2,285,732,239.36 SF311418 Monetary Aggregates M2
78 01/03/2004 2,312,217,167.10 SF311418 Monetary Aggregates M2
79 01/04/2004 2,306,755,672.89 SF311418 Monetary Aggregates M2
Licence
The MIT License (MIT)
By
Dillan Aguirre Sedeño (dillan.as22@gmail.com)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file sie_banxico-0.0.1.tar.gz
.
File metadata
- Download URL: sie_banxico-0.0.1.tar.gz
- Upload date:
- Size: 6.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0d6d089934ba8a21e287ff46a37afc7b6c9a89521c245edbea4c6b18dcfd6beb |
|
MD5 | 74bf736eb9daf3a802c345d90529ffcf |
|
BLAKE2b-256 | 3461a45213ed5b660f321b0d83e8eb5e4db16354f7f33e6790f2cfcb60cdf6df |
File details
Details for the file sie_banxico-0.0.1-py3-none-any.whl
.
File metadata
- Download URL: sie_banxico-0.0.1-py3-none-any.whl
- Upload date:
- Size: 6.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8f0d7df1e9a7f78eafcdec7aab635018eadf82af4e7ee0beb2c8748a14412214 |
|
MD5 | 68d0955b25755cd97cdd400fe03d1df8 |
|
BLAKE2b-256 | c1be3e66b06977f428190a7b1e08cfe33483ac2d38e8e0472818ffaa8cd023ac |