Skip to main content

A tool for empirical Arrhenius equation fitting for thermally-induced physicochemical processes.

Project description

sierras

Github Actions CI Documentation Status PyPI python version mit license downloads diseno_sci_sfw

sierras is a tool for empirical Arrhenius equation fitting for thermally-induced physicochemical processes.

Requirements

You need Python 3.8+ to run sierras.

Installation

You can install the most recent stable release of sierras with pip

python -m pip install -U pip
python -m pip install -U sierras

Usage

A simple example of use:

import sierras

areg = sierras.ArrheniusRegressor()

areg.fit(Temperatures, target_process)

areg.activation_energy_  # in this case in eV
areg.extrapolated_process_  # extrapolated process at room temperature

areg.plot.arrhenius(Temperatures, target_process)  # plot the fitting

For a more detailed explanation you can read the tutorial and the API.

License

MIT License

Contact info

You can contact me at ffernandev@gmail.com

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sierras-0.2.4.tar.gz (6.6 kB view details)

Uploaded Source

Built Distribution

sierras-0.2.4-py3-none-any.whl (5.7 kB view details)

Uploaded Python 3

File details

Details for the file sierras-0.2.4.tar.gz.

File metadata

  • Download URL: sierras-0.2.4.tar.gz
  • Upload date:
  • Size: 6.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for sierras-0.2.4.tar.gz
Algorithm Hash digest
SHA256 a0a0d93e888b23baf13afbdfab13dbfbad666e96cf373cdee3737a1b158b1e9e
MD5 7a6b96eb619c266d30ac522c8cf9f812
BLAKE2b-256 71946c5d673fd5a279c4946347a5c86dc3df1711b3f883cc94dcccffe3a5fe07

See more details on using hashes here.

File details

Details for the file sierras-0.2.4-py3-none-any.whl.

File metadata

  • Download URL: sierras-0.2.4-py3-none-any.whl
  • Upload date:
  • Size: 5.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for sierras-0.2.4-py3-none-any.whl
Algorithm Hash digest
SHA256 b3dd0029c72d85add8c97d23374e12b5c1a7f617269edc056755fed2f6f36ef0
MD5 9b014650e39ee212c3e454f93e096916
BLAKE2b-256 54bb282c62e56493f048db2f9927e2ad11eff9b2250078fcd1894cd785d90fdd

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page