Skip to main content

Signals plus LLMs

Project description

“DAI-Lab” An open source project from Data to AI Lab at MIT.

Development Status Python PyPi Shield Run Tests Downloads

SigLLM

Using Large Language Models (LLMs) for time series anomaly detection.

Overview

SigLLM is an extension of the Orion library, built to detect anomalies in time series data using LLMs. We provide two types of pipelines for anomaly detection:

  • Prompter: directly prompting LLMs to find anomalies in time series.
  • Detector: using LLMs to forecast time series and finding anomalies through by comparing the real and forecasted signals.

For more details on our pipelines, please read our paper.

Quickstart

Install with pip

The easiest and recommended way to install SigLLM is using pip:

pip install sigllm

This will pull and install the latest stable release from PyPi.

In the following example we show how to use one of the SigLLM Pipelines.

Detect anomalies using a SigLLM pipeline

We will load a demo data located in tutorials/data.csv for this example:

import pandas as pd

data = pd.read_csv('data.csv')
data.head()

which should show a signal with timestamp and value.

     timestamp      value
0   1222840800   6.357008
1   1222862400  12.763547
2   1222884000  18.204697
3   1222905600  21.972602
4   1222927200  23.986643
5   1222948800  24.906765

In this example we use gpt_detector pipeline and set some hyperparameters. In this case, we set the thresholding strategy to dynamic. The hyperparameters are optional and can be removed.

In addtion, the SigLLM object takes in a decimal argument to determine how many digits from the float value include. Here, we don't want to keep any decimal values, so we set it to zero.

from sigllm import SigLLM

hyperparameters = {
    "orion.primitives.timeseries_anomalies.find_anomalies#1": {
        "fixed_threshold": False
    }
}

sigllm = SigLLM(
    pipeline='gpt_detector',
    decimal=0,
    hyperparameters=hyperparameters
)

Now that we have initialized the pipeline, we are ready to use it to detect anomalies:

anomalies = sigllm.detect(data)

:warning: Depending on the length of your timeseries, this might take time to run.

The output of the previous command will be a pandas.DataFrame containing a table of detected anomalies:

        start         end  severity
0  1225864800  1227139200  0.625879

Resources

Additional resources that might be of interest:

Citation

If you use SigLLM for your research, please consider citing the following paper:

Sarah Alnegheimish, Linh Nguyen, Laure Berti-Equille, Kalyan Veeramachaneni. Can Large Language Models be Anomaly Detectors for Time Series?.

@inproceedings{alnegheimish2024sigllm,
  title={Can Large Language Models be Anomaly Detectors for Time Series?},
  author={Alnegheimish, Sarah and Nguyen, Linh and Berti-Equille, Laure and Veeramachaneni, Kalyan},
  booktitle={2024 IEEE International Conferencze on Data Science and Advanced Analytics (IEEE DSAA)},
  organization={IEEE},
  year={2024}
}

History

0.0.1 - 2024-09-25

First sigllm release to PyPI: https://pypi.org/project/sigllm/

  • Add README – Issue #17 by @sarahmish
  • Create a SigLLM API – Issue #13 by @sarahmish
  • Add a Quick Example – Issue #12 by @sarahmish
  • Forecasting Pipeline – Issue #11 by @sarahmish
  • Refactor Transformation Primitives – Issue #7 by @sarahmish
  • Forecasting Module – Issue #2 by @sarahmish

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sigllm-0.0.2.dev0.tar.gz (69.1 kB view details)

Uploaded Source

Built Distribution

sigllm-0.0.2.dev0-py2.py3-none-any.whl (35.4 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file sigllm-0.0.2.dev0.tar.gz.

File metadata

  • Download URL: sigllm-0.0.2.dev0.tar.gz
  • Upload date:
  • Size: 69.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.11.1 readme-renderer/43.0 requests/2.32.3 requests-toolbelt/1.0.0 urllib3/2.2.3 tqdm/4.66.5 importlib-metadata/4.13.0 keyring/25.4.0 rfc3986/2.0.0 colorama/0.4.6 CPython/3.10.14

File hashes

Hashes for sigllm-0.0.2.dev0.tar.gz
Algorithm Hash digest
SHA256 d36eb893603237abef87489a93a992d2a7ff2af2c1abea09cace19194c9afd0d
MD5 8a4410e10caae1d27bb62dd7f2b6d6b8
BLAKE2b-256 f2531ff3a45b2bd3f889f4933d7a88142df76e1d27414a5ed43bb592bd660c20

See more details on using hashes here.

File details

Details for the file sigllm-0.0.2.dev0-py2.py3-none-any.whl.

File metadata

  • Download URL: sigllm-0.0.2.dev0-py2.py3-none-any.whl
  • Upload date:
  • Size: 35.4 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.11.1 readme-renderer/43.0 requests/2.32.3 requests-toolbelt/1.0.0 urllib3/2.2.3 tqdm/4.66.5 importlib-metadata/4.13.0 keyring/25.4.0 rfc3986/2.0.0 colorama/0.4.6 CPython/3.10.14

File hashes

Hashes for sigllm-0.0.2.dev0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 25cfa1d3e0249b62040b07cf0237d92634cf33d33573d5ebdbc4c0755e0bfb2b
MD5 bc95b8d2b37a57b7b82a8802bab12577
BLAKE2b-256 9f70074802745f70a46dc247a0d9400dcfa27b130a6d8bca72603c92516993a9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page