SignalFx Lambda Python Wrapper
Project description
SignalFx Python Lambda Wrapper.
Usage
The SignalFx Python Lambda Wrapper is a wrapper around an AWS Lambda Python function handler, used to instrument execution of the function and send metrics and traces to SignalFx.
Installation
To install from PyPi
$ pip install signalfx_lambda
Configuring the ingest endpoint
By default, this function wrapper will send to the us0 realm. If you are not in this realm you will need to set the SIGNALFX_INGEST_ENDPOINT environment variable to the correct realm ingest endpoint (https://ingest.{REALM}.signalfx.com). To determine what realm you are in, check your profile page in the SignalFx web application (click the avatar in the upper right and click My Profile).
Environment Variables
Note: the environment variables SIGNALFX_INGEST_ENDPOINT and SIGNALFX_AUTH_TOKEN are being deprecated and will not be supported in future releases.
SIGNALFX_ACCESS_TOKEN=access token # endpoint for both metrics and tracer. Overridden by SIGNALFX_METRICS_URL # and SIGNALFX_TRACING_URL if set SIGNALFX_ENDPOINT_URL=endpoint url # optional metrics and tracing configuration SIGNALFX_METRICS_URL=ingest endpoint [ default: https://pops.signalfx.com ] SIGNALFX_SEND_TIMEOUT=timeout in seconds for sending datapoint [ default: 0.3 ] SIGNALFX_TRACING_URL=tracing endpoint [ default: https://ingest.signalfx.com/v1/trace ]
SIGNALFX_ENDPOINT_URL can be used to configure a common endpoint for metrics and
traces, as is the case when forwarding with the Smart Gateway. The path /v1/traces
will automatically be added to the endpoint for traces.
If either SIGNALFX_TRACING_URL or SIGNALFX_METRICS_URL are set, they will take precendence over SIGNALFX_ENDPOINT_URL for their respective components.
For example, if only SIGNALFX_ENDPOINT_URL is set:
SIGNALFX_ENDPOINT_URL=<gateway_address>
both metrics and traces will be sent to the gateway address.
If SIGNALFX_ENDPOINT_URL and SIGNALFX_METRICS_URL are set:
SIGNALFX_METRICS_URL=https://pops.signalfx.com SIGNALFX_ENDPOINT_URL=<gateway_address>
Traces will be sent to the gateway and metrics will go through POPS.
Wrapping a function
There are two wrappers provided.
For metrics, decorate your handler with @signalfx_lambda.emits_metrics
import signalfx_lambda @signalfx_lambda.emits_metrics def handler(event, context): # your code
For tracing, use the @signalfx_lambda.is_traced decorator
import signalfx_lambda @signalfx_lambda.is_traced def handler(event, context): # your code
The decorators can be used individually or together.
Metrics and dimensions sent by the metrics wrapper
The Lambda wrapper sends the following metrics to SignalFx:
Metric Name |
Type |
Description |
---|---|---|
function.invocations |
Counter |
Count number of Lambda invocations |
function.cold_starts |
Counter |
Count number of cold starts |
function.errors |
Counter |
Count number of errors from underlying Lambda handler |
function.duration |
Gauge |
Milliseconds in execution time of underlying Lambda handler |
The Lambda wrapper adds the following dimensions to all data points sent to SignalFx:
Dimension |
Description |
---|---|
aws_request_id |
AWS Request ID |
lambda_arn |
ARN of the Lambda function instance |
aws_region |
AWS Region |
aws_account_id |
AWS Account ID |
aws_function_name |
AWS Function Name |
aws_function_version |
AWS Function Version |
aws_function_qualifier |
AWS Function Version Qualifier (version or version alias if it is not an event source mapping Lambda invocation) |
event_source_mappings |
AWS Function Name (if it is an event source mapping Lambda invocation) |
aws_execution_env |
AWS execution environment (e.g. AWS_Lambda_python3.6) |
function_wrapper_version |
SignalFx function wrapper qualifier (e.g. signalfx_lambda_0.0.2) |
metric_source |
The literal value of ‘lambda_wrapper’ |
Sending custom metric from the Lambda function
import signalfx_lambda # sending application_performance metric with value 100 and dimension abc:def signalfx_lambda.send_gauge('application_performance', 100, {'abc':'def'}) # sending counter metric with no dimension signalfx_lambda.send_counter('database_calls', 1)
Adding manual tracing to the Lambda function
Manual instrumentation can be added to trace critical parts of your handler function.
import opentracing tracer = opentracing.tracer def some_function(): with tracer.start_active_span("span_name", tags=tags) as scope: # do some work span = scope.span span.set_tag("example_tag", "example_value")
More examples and usage information can be found in the Jaeger Python Tracer documentation.
Testing it out locally
Use python-lambda-local
pip install python-lambda-local
python-lambda-local tests/test.py tests/event.json -a 'arn:aws:lambda:us-east-1:accountId:function:functionNamePython:$LATEST'
Packaging
python setup.py bdist_wheel --universal
License
Apache Software License v2. Copyright © 2014-2019 SignalFx
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distribution
File details
Details for the file signalfx_lambda-0.1.2-py2.py3-none-any.whl
.
File metadata
- Download URL: signalfx_lambda-0.1.2-py2.py3-none-any.whl
- Upload date:
- Size: 15.3 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.20.1 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/2.7.15
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 78e1e9bba5e43ed0a6adca36a46ac834445ce83501e6c2b6ff369fae7277daaa |
|
MD5 | d81ed47b68af36bbc87234c3ca39ce97 |
|
BLAKE2b-256 | 67b361b9f633bbec83c997ff403cace908e204f058fa04d9e229ddb9a5089b78 |