Skip to main content

A small package for Numerai Signals locally

Project description

pip install signalslite

Why:

  • I wanted a pipeline that can generate features quickly so I can add, remove, build more features whenever needed. So it should be able to do everything from scratch in couple of hours. A relational DB would increase workload of setting things up. So I decided to use parquet files split into daily structure. This is fast without any additional setup.

  • Least friction to get started. It should effortlessly run on consumer grade laptops. Consequently, automate the whole pipeline on cloud, so makes sense to make it "lite", use parallelization when possible, allow for free data sources. It can utilize cuda if available, but is able to run on cpu as well.

  • It should be able to run in Colab default runtime. One way to setup a pipeline is to save all data to mounted drive with more storage.

  • Under 1000 LoC possible? Goal is not to build the best pipeline, but instead, a wrapper on top of flexible code that new users can easily understand and modify as needed.

Stages:

  1. Daily Data Collection/updation:
    • Yahoo/EODHD (Thanks to https://github.com/degerhan/dsignals)
    • Save in daily parquet files
    • Update daily parquet files
    • Colab seem to be slow in loading data from yahoo. Will update.
  2. Generate primary features:
    • Technicla indicators (RSI, MACD, SMA, EMA, etc on various timeframes)
    • flexible enough to accomodate fundamental data and news vectors data since things are independent of each other
  3. Secondary features:
    • Generate features from primary features
    • like crossovers, ratios between technical features, etc
  4. Scaling:
    • bringing the cross sectional features to same scale [0, 1]
    • Now data looks similar to Numerai classic data
  5. Targets:
    • Generate your own targets for trading strategies
    • or use Numerai Signals targets
  6. Modelling:
    • your best models in Numerai classic should work here
  7. Scheduling:
    • Run the pipeline daily
    • should be able to run on cloud

Notes:

  • This is a work in progress. I will keep adding more features and examples.
  • more tests,
  • more documentation,
  • more examples,
  • more flexibility,
  • more speed,
  • more parallelization,
  • more cloud support,
  • more data sources,
  • more targets,
  • more models,
  • more everything

Hope you like it and find it useful. Please let me know if you have any suggestions or feedback. Thanks!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

signalslite-0.1a4.tar.gz (15.0 kB view details)

Uploaded Source

Built Distribution

signalslite-0.1a4-py3-none-any.whl (17.8 kB view details)

Uploaded Python 3

File details

Details for the file signalslite-0.1a4.tar.gz.

File metadata

  • Download URL: signalslite-0.1a4.tar.gz
  • Upload date:
  • Size: 15.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.17

File hashes

Hashes for signalslite-0.1a4.tar.gz
Algorithm Hash digest
SHA256 da80285079e7d895054585825365428b5eb8b38f351a121103193194c6e3c462
MD5 919398b6331ca19c8d5338e429bb1286
BLAKE2b-256 e80aa260c2b26f21c81012778e4791f3ea074fe25e9793d9025cd0e1044c7dd9

See more details on using hashes here.

File details

Details for the file signalslite-0.1a4-py3-none-any.whl.

File metadata

  • Download URL: signalslite-0.1a4-py3-none-any.whl
  • Upload date:
  • Size: 17.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.17

File hashes

Hashes for signalslite-0.1a4-py3-none-any.whl
Algorithm Hash digest
SHA256 ffd575190adf0186d2d3cdf97f0890125783bd722b4ae0399a5529802535fd3f
MD5 cd81594d238d53aac8a78a8bd5ec1d64
BLAKE2b-256 b3cf3eddc4ab87c6ff096987c1a4d241928dd6d505ec66a308c31af64c9688bc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page