Skip to main content

SIGNed explanations: Unveiling relevant features by reducing bias

Project description

SIGNed explanations: Unveiling relevant features by reducing bias

This repository and python package has been published alongside the following journal article: https://doi.org/10.1016/j.inffus.2023.101883

If you use the code from this repository in your work, please cite:

 @article{Gumpfer2023SIGN,
    title = {SIGNed explanations: Unveiling relevant features by reducing bias},
    author = {Nils Gumpfer and Joshua Prim and Till Keller and Bernhard Seeger and Michael Guckert and Jennifer Hannig},
    journal = {Information Fusion},
    pages = {101883},
    year = {2023},
    issn = {1566-2535},
    doi = {https://doi.org/10.1016/j.inffus.2023.101883},
    url = {https://www.sciencedirect.com/science/article/pii/S1566253523001999}
}

Setup

To install the package in your environment, run:

 pip3 install signxai

Usage

VGG16

The below example illustrates the usage of the signxai package in combination with a VGG16 model trained on imagenet:

import numpy as np
import matplotlib.pyplot as plt
from tensorflow.keras.applications.vgg16 import VGG16
from signxai.methods.wrappers import calculate_relevancemap
from signxai.utils.utils import (load_image, aggregate_and_normalize_relevancemap_rgb, download_image, 
                                 calculate_explanation_innvestigate)

# Load model
model = VGG16(weights='imagenet')

#  Remove last layer's softmax activation (we need the raw values!)
model.layers[-1].activation = None

# Load example image
path = 'example.jpg'
download_image(path)
img, x = load_image(path)

# Calculate relevancemaps
R1 = calculate_relevancemap('lrpz_epsilon_0_1_std_x', np.array(x), model)
R2 = calculate_relevancemap('lrpsign_epsilon_0_1_std_x', np.array(x), model)

# Equivalent relevance maps as for R1 and R2, but with direct access to innvestigate and parameters
R3 = calculate_explanation_innvestigate(model, x, method='lrp.stdxepsilon', stdfactor=0.1, input_layer_rule='Z')
R4 = calculate_explanation_innvestigate(model, x, method='lrp.stdxepsilon', stdfactor=0.1, input_layer_rule='SIGN')

# Visualize heatmaps
fig, axs = plt.subplots(ncols=3, nrows=2, figsize=(18, 12))
axs[0][0].imshow(img)
axs[1][0].imshow(img)
axs[0][1].matshow(aggregate_and_normalize_relevancemap_rgb(R1), cmap='seismic', clim=(-1, 1))
axs[0][2].matshow(aggregate_and_normalize_relevancemap_rgb(R2), cmap='seismic', clim=(-1, 1))
axs[1][1].matshow(aggregate_and_normalize_relevancemap_rgb(R3), cmap='seismic', clim=(-1, 1))
axs[1][2].matshow(aggregate_and_normalize_relevancemap_rgb(R4), cmap='seismic', clim=(-1, 1))

plt.show()

(Image credit for example used in this code: Greg Gjerdingen from Willmar, USA)

MNIST

The below example illustrates the usage of the signxai package in combination with a dense model trained on MNIST:

import numpy as np
from matplotlib import pyplot as plt
from tensorflow.python.keras.datasets import mnist
from tensorflow.python.keras.models import load_model

from signxai.methods.wrappers import calculate_relevancemap
from signxai.utils.utils import normalize_heatmap, download_model

# Load train and test data
(x_train, y_train), (x_test, y_test) = mnist.load_data()

# Scale images to the [-1, 0] range
x_train = x_train.astype("float32") / -255.0
x_test = x_test.astype("float32") / -255.0
x_train = -(np.ones_like(x_train) + x_train)
x_test = -(np.ones_like(x_test) + x_test)

# Load model
path = 'model.h5'
download_model(path)
model = load_model(path)

# Remove softmax
model.layers[-1].activation = None

# Calculate relevancemaps
x = x_test[231]
R1 = calculate_relevancemap('gradient_x_input', np.array(x), model, neuron_selection=3)
R2 = calculate_relevancemap('gradient_x_sign_mu_neg_0_5', np.array(x), model, neuron_selection=3)
R3 = calculate_relevancemap('gradient_x_input', np.array(x), model, neuron_selection=8)
R4 = calculate_relevancemap('gradient_x_sign_mu_neg_0_5', np.array(x), model, neuron_selection=8)

# Visualize heatmaps
fig, axs = plt.subplots(ncols=3, nrows=2, figsize=(18, 12))
axs[0][0].imshow(x, cmap='seismic', clim=(-1, 1))
axs[1][0].imshow(x, cmap='seismic', clim=(-1, 1))
axs[0][1].matshow(normalize_heatmap(R1), cmap='seismic', clim=(-1, 1))
axs[0][2].matshow(normalize_heatmap(R2), cmap='seismic', clim=(-1, 1))
axs[1][1].matshow(normalize_heatmap(R3), cmap='seismic', clim=(-1, 1))
axs[1][2].matshow(normalize_heatmap(R4), cmap='seismic', clim=(-1, 1))

plt.show()

Experiments

To reproduce the experiments from our paper, please find a detailed description on https://github.com/nilsgumpfer/SIGN.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

signxai-1.1.6.tar.gz (85.9 kB view details)

Uploaded Source

Built Distribution

signxai-1.1.6-py3-none-any.whl (110.1 kB view details)

Uploaded Python 3

File details

Details for the file signxai-1.1.6.tar.gz.

File metadata

  • Download URL: signxai-1.1.6.tar.gz
  • Upload date:
  • Size: 85.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.18

File hashes

Hashes for signxai-1.1.6.tar.gz
Algorithm Hash digest
SHA256 c5829d3f41a0899ae3e99fb091323d3bcdd8acff403ed9212adcae60bbcc52e1
MD5 694dbe3408aea73b6c491e4e448f6edd
BLAKE2b-256 95188a70b2d5f26bd61eca5ef5ae4cdeb0d55c86f8dc435386282aa76caabbd5

See more details on using hashes here.

File details

Details for the file signxai-1.1.6-py3-none-any.whl.

File metadata

  • Download URL: signxai-1.1.6-py3-none-any.whl
  • Upload date:
  • Size: 110.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.18

File hashes

Hashes for signxai-1.1.6-py3-none-any.whl
Algorithm Hash digest
SHA256 042c2e668c17953d3da603ffa4258a2d3d7ec94f4001596d68c0ba55cd9adb66
MD5 bff16065c46863bde3d2f59cd269c6a2
BLAKE2b-256 55ec48ac03a275c706973d4b9f403f34f34cefcc89c858541d5cbaabdd20c9c0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page